
Chapter 5. The Second Law of 

Thermodynamics



Introduction

 Thermodynamics is concerned with transformation of energy

 The first law  conservation of energy 

 There is no indication about the direction of energy transformation

 Heat and Work : Transit of energy 

 Work : readily transformed into other forms of energy

 Heat : complete conversion into work / mechanical or electrical 

energy have failed (efficiency do not exceed 40 %)

 Heat is less valuable than mechanical work or electrical energy



5.1 Statement of the Second Law

 The second law is obtained from experience

 The second law suggest a general restriction on processes beyond that 

imposed by the first law.

No apparatus can operate in such a way that its only effect

(in system and surroundings) is to convert heat absorbed by 

a system completely into work done by the system

Statement 1

• This statement does not mean that heat cannot be converted into work 

• Production of work using heat require change in the system

• Continuous production of work from heat is impossible 



5.1 Statement of the Second Law

No process is possible which consists solely in the transfer of 

heat from one temperature level to higher one

Statement 2

It is impossible by a cyclic process to convert the heat 

absorbed by a system completely into work done by the system.

Statement 1a

 Cyclic process : system is periodically restored to its original 

state.



5.2 Heat Engines

 The second law arose from the study of heat engines

 An example - Steam Power Plant

 Water is used as working fluid

 Periodically return to its original state

• Liquid water from a condenser is pumped into a boiler at elevated pressure.

• Heat from a fuel is transferred in the boiler to the water, converting it to high-
temperature steam at the boiler pressure.

• Energy is transferred as shaft work from the steam to the surroundings by a device 
such as turbine, in which the steam expands to reduced pressure and temperature.

• Exhaust steam from turbine is condensed by transfer of heat to surroundings, 
producing liquid water for return to the boiler, completing the cycle.



5.2 Heat Engines

 Essentials of heat-engine cycle

 Absorption of heat into system at a high temperature

 Rejection of heat to surroundings at lower temperature

 Heat engines normally operate at two temperature levels

 Heat reservoir : imaginary body capable of absorbing or rejecting 

unlimited quantities of heat without temperature change



5.2 Heat Engines

 Application of the first law to heat engines;

 Thermal efficiency : 

 For 100 % thermal efficiency : Qc must be zero

 No engine has ever been built to approach 100 % efficiency  heat is 

always rejected to cold reservoir
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If a thermal efficiency of 100 % is not possible, 

what determines the upper limit ?  Carnot Engine



Carnot Engine

 An ideal engine first described by N.L.S Carnot in 1824.

 Carnot cycle

• Step 1 : A system at an initial temperature of cold reservoir at TC undergoes 
reversible adiabatic process that causes its temperature rise to that of hot 
reservoir at TH.

•Step 2 : The system maintains contact with hot reservoir at TH, and undergoes 
a reversible isothermal process during which QH is absorbed from hot reservoir

•Step 3: The system undergoes a reversible adiabatic process in opposite 
direction of step 1 that brings its temperature back to that of the cold reservoir 
at TC

•Step 4: The system maintains contact with the reservoir at TC, and undergoes a 
reversible isothermal process in opposite direction of step 2 that returns it to its 
original state with rejection of heat Qc to the cold reservoir.



Carnot’s Theorem

 Proof

 If an engine E exist with a thermal 

efficiency greater than that of Carnot 

engine 

 E : engine with greater efficiency than 

Carnot engine

 C : Backward Carnot engine (refrigerator)

 With combination of E+C : Net result is 

heat transfer from TC to TH

 Violation of the second law

For two given heat reservoirs no engine can have thermal 

efficiency higher than that of Carnot engine
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Carnot’s Theorem

 Proof

 Efficiency of E is greater than C

 Net effect of E + C

 Heat is delivered from cold reservoir to hot 

reservoir

For two given heat reservoirs no engine can have thermal 
efficiency higher than that of Carnot engine
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Corollary to Carnot’s Theorem

The thermal efficiency of Carnot engine depends 

only on the temperature levels and not upon the 

working substance of the engine.



5.3 Thermodynamic Temperature Scale

Kelvin Scale  Ideal Gas Thermometry

 Thermodynamic Temperature Scale

 Carnot theorem 

 temperature levels independent of material properties

q : temperature levels (empirical scale)

 According to corollary to Carnot’s Theorem;

- Efficiency only depends on temperature levels (q)
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5.3 Thermodynamic Temperature Scale

 Carnot engine 1 and 2  combination constitute a 

third Carnot engine

 Engine 1

 Engine 2

 Engine 1+2
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Ideal-Gas Temperature Scale: Carnot’s Equation

 Relation between ideal gas temperature scale and thermodynamic 

temperature scale

 Carnot engine : Ideal gas as working fluid

 a b : adiabatic compression (temperature rise)

 b  c : isothermal expansion (absorption of heat)

 c  d : adiabatic expansion (temperature decrease)

 d  a : isothermal compression (rejection of heat)

 Derivations

 For isothermal steps : (bc, da)

 For adiabatic steps : (ab, cd)
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Ideal-Gas Temperature Scale: Carnot’s Equation
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 Derivation
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Ideal-Gas Temperature Scale: Carnot’s Equation

 Kelvin scale is identical to thermodynamic temperature scale

 Efficiency of Carnot engine approaches 1 when T -273.15 oC

 Practical efficiency

 Cold Reservoir : atmosphere, lake, rivers,… (T ≈ 300 K)

 Hot Reservoir : combustion of fossil fuels, nuclear reactor (T ≈ 600 K)

 Efficiency =

 Actual heat engines are irreversible, the efficiency rarely exceed 0.35
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Example 5.1

A central power plant, rated at 800,000 kW, generates steam at 585K and 

discards heat to a river at 295K. If the thermal efficiency of the plant is 

70 % of the maximum possible value, how much heat is discarded to the 

river at rated power?
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Since |W | = 800,000 kW and solving for |Qc |,
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5.4 Entropy

 Q/T is related to absorption and rejection of heat by working fluid

 Above relation also applies to other reversible cycle

 Divide the enclosed area by series of adiabatic curves

 Connect adjacent curves with short isotherms

 Each pair of adjacent adiabatic curves and 

their isothermal connecting curves represents 

a Carnot cycle
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5.4 Entropy

 dQ/T sum to zero for arbitrary reversible cycle  characteristics of property

 Existence of property whose differential changes for arbitrary cycles are given by these 

quantities 

 Called “ENTROPY”

 For reversible processes, integration of heat/temperature gives entropy changes

 For irreversible processes, entropy changes are given  by below equation but cannot be 

calculated by integral – integration should be performed along reversible path
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5.4 Entropy

 For reversible processes, integration of heat/temperature gives entropy changes

 For irreversible processes, entropy changes are given  by below equation but cannot be 

calculated by integral – integration should be performed along reversible path

T

dQ
dS revt 

t

rev TdSdQ 


B

A

revt

T

dQ
S

A

t

B

t

t SSS 

A

t

B

t

t SSS 



Discussion of Entropy

 Entropy owes its existence to the second law

 The first law  existence of internal energy (U)

 The second law  existence of entropy (S)

 Entropy changes of reversible system; 

 Entropy changes of irreversible system;

 Alternative way ; arbitrary chosen reversible process which causes 

the same change 

There exists a property called entropy (S), which is an intrinsic property of a 

system, functionally related to the measurable coordinates which characterizes 

the system. For reversible process, changes are given as;               
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5.5 Entropy Changes of An Ideal Gas

 One mole of ideal gas undergoes mechanically reversible process
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Although derived for reversible process, this equation can be 

applied to irreversible processes causing the same change 

Entropy is state function !



Example 5.3

Methane gas at 550K and 5 bar undergoes a reversible adiabatic expansion 

to 1 bar. Assuming methane to be an ideal gas at these conditions, find its 

final temperature.

For this process, S = 0 0
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Solving for T using solver or iteration,

T = 411.34 K



5.6 Mathematical Statement of the Second Law

 Consider a process

 Heat is transferred from hot body to cold body 

 Entropy changes of reservoirs

 Total entropy change
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• Total entropy change of irreversible process is positive.

• TH TC then S0



5.6 Mathematical Statement of the Second Law

Mathematical Statement of the Second Law

 Every process proceed in such a direction that the total

entropy change associated with it is positive, the limiting value 

of zero being attained only by a reversible process. 

 No process is possible for which the total entropy decreases.

Work produced by engine
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Example 5.4

A 40-kg steel casting (Cp = 0.5 kJ/kgK) at a temperature of 450 oC is 

quenched in 150 kg of oil (Cp = 2.5 kJ/kgK) at 25 oC. If there are no heat 

losses, what is the change in entropy of (a) the casting, (b) the oil, and (c) 

both considered together?

From the energy balance, Q = 40×0.5×(T – 450) + 150×2.5×(T – 25) = 0

 T = 46.5 oC
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5.7 Entropy Balance for Open Systems

 Entropy Balance Equation

 Important characteristics

- Entropy is not conserved

- Entropy generation term is required
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Example 5.5

In a steady-state flow process, 1 mol/s of air at 600 K and 1 atm is continuously mixed with 

2 mol/s of air at 450 K and 1 atm. The product stream is at 400 K and 1 atm. A schematic 

representation of the process is shown in Fig. 5.7. Determine the rate of heat transfer and 

the rate of entropy generation for the process. Assume that air is an ideal gas with Cp = 

7/2R, that the surroundings are at 300 K and that kinetic- and potential-energy changes 

are negligible.



Example 5.5 - solution

From the energy balance on this process,
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Example 5.6

An inventor claims to have devised a process which takes in only saturated 

steam at 100 oC and which by a complicated series of steps makes heat 

continuously available at a temperature level of 200 oC, where 2,000 kJ of energy 

as heat is liberated for every kg of steam taken into the process. Show whether 

or not this process is possible. To give this process the most favorable conditions, 

assume cooling water available in unlimited quantity at a temperature of 0 oC.

Use the basis as 1 kg of steam.



Example 5.6 - solution

- The values of H and S for saturated 

steam at 100 oC and liquid water at 0 oC 

can be found in the steam table.

1. The energy balance
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2. The entropy balance

For steam, S = 0.0 – 7.3554 = -7.3554 kJ/K

For the heat reservoir at 200 oC,

For the heat reservoir at 0 oC,
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Therefore, Stotal = -7.3554 + 4.2270 + 2.4748 = -0.6536 kJ/K < 0 (impossible!)



Example 5.6 - solution

In this process, what is the maximum 

amount of heat that can be transferred 

to the heat reservoir at 200 oC?

1. The energy balance

 Q'QQH 

2. The entropy balance
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Since T’ = 473.15, T = 273.15, H = -2676.0 kJ, and S = 7.3554 kJ

Solving for Q’ gives Q’ = -1577.7 kJ/kg



5.10 The Third Law of Thermodynamics

 Absolute value of entropy ?

 A postulate required to calculate values

 The absolute entropy is zero for all perfect crystalline 

substances at zero temperature

 At T = 0, S=0 for all substances 

 Entropy calculation

 Heat capacity and heat effect accompanying phase change are 

required

 The absolute entropy of a gas at temperature T
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5.11 Entropy from the Microscopic Viewpoint

Microscopic interpretation of entropy is completely 

different from thermodynamic interpretation

 An Example) Adiabatic expansion of a gas
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5.11 Entropy from the Microscopic Viewpoint

 Statistical Thermodynamics / Microscopic View Point

 Developed by L. Boltzmann and J. W. Gibbs

 Number of Ways 

- Microscopic particles can be distributed among “states” accessible to them

- Based on quantum mechanical observations
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5.11 Entropy from the Microscopic Viewpoint

 Weight ....

 Each configurations can be achieved in different ways

 Example 1 :  {3,0} configuration  1

 Example 2 :  {2,1} configuration  3
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5.11 Entropy from the Microscopic Viewpoint

 Calculation of Weight ....

 Weight () : number of ways that a configuration can be achieved in different ways

 General formula for the weight of  {n0 , n1 , n2 …} configuration
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{1,0,3,5,10,1} of 20 objects

 = 9.31E8 

Example 2

{0,1,5,0,8,0,3,2,1} of 20 objects

 = 4.19 E10



5.11 Entropy from the Microscopic Viewpoint

NA NA/2 NA/2

Adiabatic

No work

)!0)(!(

!
1

A

A

N

N


])!2/][()!2/[(

!
2

AA

A

NN

N


 Connection between entropy and weight 

 lnkS
ANRk /



5.11 Entropy from the Microscopic Viewpoint

NA NA/2 NA/2
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 Stirling’s Formula XXXX  ln!ln

Useful formula when dealing with factorial of large numbers
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Homework

 Homework

 5.4, 5.8, 5.12, 5.18(a)(c)(e), 5.22, 5.30

 Due: 

 Other Recommend Problems

 5.3, 5.9, 5.10, 5.21, 5.26, 5.31


