CHBE320 LECTURE IV MATHEMATICAL MODELING OF **CHEMICAL PROCESS**

Professor Dae Ryook Yang

Fall 2021 Dept. of Chemical and Biological Engineering **Korea University**

CHBE320 Process Dynamics and Control

Korea University 4-1

THE RATIONALE FOR MATHEMATICAL **MODELING**

· Where to use

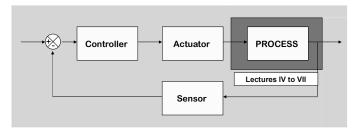
- To improve understanding of the process
- To train plant operating personnel
- To design the control strategy for a new process
- To select the controller setting
- To design the control law
- To optimize process operating conditions

A Classification of Models

- Theoretical models (based on physicochemical law)
- Empirical models (based on process data analysis)
- Semi-empirical models (combined approach)

Road Map of the Lecture IV

· Basics of Process Modeling



- Mathematical Modeling
- Steady-state model vs. Dynamic model
- Degree of freedom analysis
- Models of representative processes, etc.

CHBE320 Process Dynamics and Control

Korea University 4-2

DYNAMIC VERSUS STEADY-STATE MODEL

Dynamic model

- Describes time behavior of a process
 - · Changes in input, disturbance, parameters, initial condition, etc.
- Described by a set of differential equations
 - : ordinary (ODE), partial (PDE), differential-algebraic(DAE)



Steady-state model

- Steady state: No further changes in all variables
- No dependency in time: No transient behavior
- Can be obtained by setting the time derivative term zero

CHBE320 Process Dynamics and Control CHBE320 Process Dynamics and Control Korea University 4-3

MODELING PRINCIPLES

Conservation law

Within a defined system boundary (control volume)

$$\begin{bmatrix} \text{rate of} \\ \text{accumulation} \end{bmatrix} = \begin{bmatrix} \text{rate of} \\ \text{input} \end{bmatrix} - \begin{bmatrix} \text{rate of} \\ \text{output} \end{bmatrix}$$
$$+ \begin{bmatrix} \text{rate of} \\ \text{generation} \end{bmatrix} - \begin{bmatrix} \text{rate of} \\ \text{disappreance} \end{bmatrix}$$

- Mass balance (overall, components)
- Energy balance
- · Momentum or force balance
- Algebraic equations: relationships between variables and parameters

CHBE320 Process Dynamics and Control

Korea University 4-5

Korea University 4-7

DEGREE OF FREEDOM (DOF) ANALYSIS

DOF

- Number of variables that can be specified independently
- $-N_{\rm F} = N_{\rm V} N_{\rm F}$
 - N_E: Degree of freedom (no. of independent variables)
 - N_v: Number of variables
 - N_E: Number of equations (no. of dependent variables)
 - · Assume no equation can be obtained by a combination of other equations

Solution depending on DOF

- If $N_E = 0$, the system is exactly determined. Unique solution exists.
- If $N_E > 0$, the system is underdetermined. Infinitely many solutions exist.
- If $N_E < 0$, the system is *overdetermined*. No solutions exist.

CHBE320 Process Dynamics and Control

MODELING APPROACHES

· Theoretical Model

- Follow conservation laws
- Based on physicochemical laws
- Variables and parameters have physical meaning
- Difficult to develop
- Can become quite complex
- Extrapolation is valid unless the physicochemical laws are invalid
- Used for optimization and rigorous prediction of the process behavior

· Empirical model

- Based on the operation data
- Parameters may not have physical meaning
- Easy to develop
- Usually quite simple
- Requires well designed experimental data
- The behavior is correct only around the experimental condition
- Extrapolation is usually invalid
- Used for control design and simplified prediction model

CHBE320 Process Dynamics and Control

Korea University 4-6

LINEAR VERSUS NONLINEAR MODELS

· Superposition principle

```
\forall \alpha, \beta \in \Re, and for a linear operator, L
Then L(\alpha x_1(t) + \beta x_2(t)) = \alpha L(x_1(t)) + \beta L(x_2(t))
```

· Linear dynamic model: superposition principle holds

$$\forall \alpha, \beta \in \Re, u_1(t) \to y_1(t) \text{ and } u_2(t) \to y_2(t)$$

$$\alpha u_1(t) + \beta u_2(t) \to \alpha y_1(t) + \beta y_2(t)$$

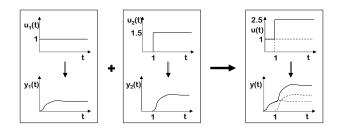
$$\forall \alpha, \beta \in \Re, x_1(0) \to y_1(t) \text{ and } x_2(0) \to y_2(t)$$

$$\alpha x_1(0) + \beta x_2(0) \to \alpha y_1(t) + \beta y_2(t)$$

- Easy to solve and analytical solution exists.
- Usually, locally valid around the operating condition
- Nonlinear: "Not linear"
 - Usually, hard to solve and analytical solution does not exist.

CHBE320 Process Dynamics and Control

ILLUSTRATION OF SUPERPOSITION **PRINCIPLE**



Valid only for linear process

- For example, if $y(t)=u(t)^2$, $(u_1(t)+1.5u_2(t))^2$ is not same as $u_1(t)^2+1.5u_2(t)^2$.

CHBE320 Process Dynamics and Control

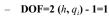
Korea University 4-9

Control

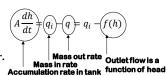
MODELS OF REPRESENTATIVE **PROCESSES**

Liquid storage systems

- System boundary: storage tank
- Mass in: q; (vol. flow, indep. var)
- Mass out: q (vol, flow, dep. var)
- No generation or disappearance (no reaction or leakage)
- No energy balance



- If $f(h) = h/R_V$, the ODE is linear. (R_V is the resistance to flow)



- If $f(h) = C_V \sqrt{\rho g h/g_c}$, the ODE is nonlinear. (C_{ν} is the valve constant)

CHBE320 Process Dynamics and Control

Korea University 4-11

TYPICAL LINEAR DYNAMIC MODEL

Linear ODE

$$\tau \frac{dy(t)}{dt} = -y(t) + Ku(t)$$
 (τ and K are contant, 1st order)

$$\frac{d^{n}y(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{0}y(t)$$

$$=b_m \frac{d^m u(t)}{dt^m} + b_{m-1} \frac{d^{m-1} u(t)}{dt^{m-1}} + \dots + b_0 u(t) \quad \text{(nth order)}$$

Nonlinear ODE

$$\tau \frac{dy(t)}{dt} = -y(t)^2 + Ku(t)$$

$$\tau \frac{dy(t)}{dt} = -y(t)^2 + Ku(t) \qquad \qquad \tau \frac{dy(t)}{dt}y(t) = -y(t)\sin(y) + Ku(t)$$

 c_{Ai}, q_i, T_i

Cooling

$$\tau \frac{dy(t)}{dt} = -y(t) + K\sqrt{u(t)} \qquad \qquad \tau \frac{dy(t)}{dt} = -e^{-y(t)} + Ku(t)$$

$$\tau \frac{dy(t)}{dt} = -e^{-y(t)} + Ku(t)$$

CHBE320 Process Dynamics and Control

Korea University 4-10

 c_A, q, T

Continuous Stirred Tank Reactor (CSTR)

- Liquid level is constant (No acc. in tank)
- Constant density, perfect mixing
- Reaction: A \rightarrow B $(r = k_0 \exp(-E/RT)c_A)$
- System boundary: CSTR tank
- Component mass balance

$$V\frac{dc_A}{dt} = q(c_{Ai} - c_A) - Vkc_A$$

- Energy balance

$$V\rho C_p \frac{dT}{dt} = q\rho C_p (T_i - T) + (-\Delta H)Vkc_A + UA(T_c - T)$$

- DOF analysis
 - No. of variables: 6 $(q, c_4, c_{4i}, T_i, T, T_c)$
 - No. of equation:2 (two dependent vars.: c_4 , T)
 - DOF=6-2=4
 - Independent variables: 4 (q, c_{4i}, T_i, T_c)
 - Parameters: kinetic parameters, V, U, A, other physical properties
 - Disturbances: any of q, c_4 , T_2 , T_3 , which are not manipulatable

CHBE320 Process Dynamics and Control

STANDARD FORM OF MODELS

From the previous example

$$\frac{dc_A}{dt} = \frac{q}{V}(c_{Ai} - c_A) - kc_A = f_1(c_A, T, q, c_{Ai})$$

$$\frac{dT}{dt} = \frac{q}{V}(T_i - T) + \frac{q}{\rho C_p}(-\Delta H)kc_A + \frac{UA}{\rho C_p}(T_c - T) = f_2(c_A, T, q, T_c, T_i)$$

State-space model

$$\dot{\mathbf{x}} = d\mathbf{x}/dt = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

where $\mathbf{x} = [x_1, \dots, x_n]^T$, $\mathbf{u} = [u_1, \dots, u_m]^T$, $\mathbf{d} = [d_1, \dots, d_l]^T$

- **x**: states, $[c_A T]^T$
- **u**: inputs, $[q T_c]^T$
- d: disturbances, $[c_{Ai} T_i]^T$
- y: outputs can be a function of above, y=g(x,d,u), $[c_A T]^T$
- If higher order derivatives exist, convert them to 1st order.

CHBE320 Process Dynamics and Control

Korea University 4-13

SOLUTION OF MODELS

- ODE (state-space model)
 - Linear case: find the analytical solution via Laplace transform, or other methods.
 - Nonlinear case: analytical solution usually does not exist.
 - Use a numerical integration, such as <u>RK method</u>, by defining initial condition, time behavior of input/disturbance
 - Linearize around the operating condition and find the analytical solution

PDE

 Convert to ODE by discretization of spatial variables using finite difference approximation and etc.

$$\frac{\partial T_L}{\partial t} = -\nu \frac{\partial T_L}{\partial z} + \frac{1}{\tau_{HL}} (T_W - T_L) \longrightarrow \frac{\partial T_L(j)}{\partial t} = -\frac{\nu}{\Delta z} T_L(j-1) - \left(\frac{\nu}{\Delta z} + \frac{1}{\tau_{HL}}\right) T_L(j) + \frac{1}{\tau_{HL}} T_W \ (j=1, \cdots N)$$

$$\frac{\partial T_L}{\partial z} \approx \frac{T_L(j) - T_L(j-1)}{\Delta z}$$

CHBE320 Process Dynamics and Control

Korea University 4-15

CONVERT TO 1ST-ORDER ODE

· Higher order ODE

$$\frac{d^n x(t)}{dt^n} + a_{n-1} \frac{d^{n-1} x(t)}{dt^{n-1}} + \dots + a_0 x(t) = b_0 u(t)$$

Define new states

$$x_1 = x, x_2 = \dot{x}, x_3 = \ddot{x}, \dots, x_n = x^{(n-1)}$$

A set of 1st-order ODE's

$$\begin{array}{l} \dot{x}_1 = x_2 \\ \dot{x}_2 = x_3 \\ \vdots \\ \dot{x}_n = -a_{n-1}x_n - a_{n-2}x_{n-1} - \cdots - a_0x_1 + b_0u \end{array}$$

CHBE320 Process Dynamics and Control

Korea University 4-14

LINEARIZATION

- Equilibrium (Steady state)
 - Set the derivatives as zero: $0 = f(\bar{x}, \bar{u}, \bar{d})$
 - Overbar denotes the steady-state value and $(\tilde{x}, \tilde{u}, \tilde{d})$ is the equilibrium point. (could be multiple)
 - Solve them analytically or numerically using Newton method, etc.
- Linearization around equilibrium point
 - Taylor series expansion to 1st order

$$f(x,u) = f(\bar{x},\bar{u}) + \frac{0}{\partial x} \Big|_{(\bar{x},\bar{u})} (x - \bar{x}) + \frac{\partial f}{\partial u} \Big|_{(\bar{x},\bar{u})} (u - \bar{u}) + \cdots$$

- Ignore higher order terms
- Define deviation variables: $x' = x \bar{x}$, $u' = u \bar{u}$

$$\dot{\mathbf{x}}' = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\Big|_{(\tilde{\mathbf{x}},\tilde{\mathbf{n}})} \mathbf{x}' + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}\Big|_{(\tilde{\mathbf{x}},\tilde{\mathbf{n}})} \mathbf{u}' = \mathbf{A}\mathbf{x}' + \mathbf{B}\mathbf{u}'$$

CHBE320 Process Dynamics and Control