CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS

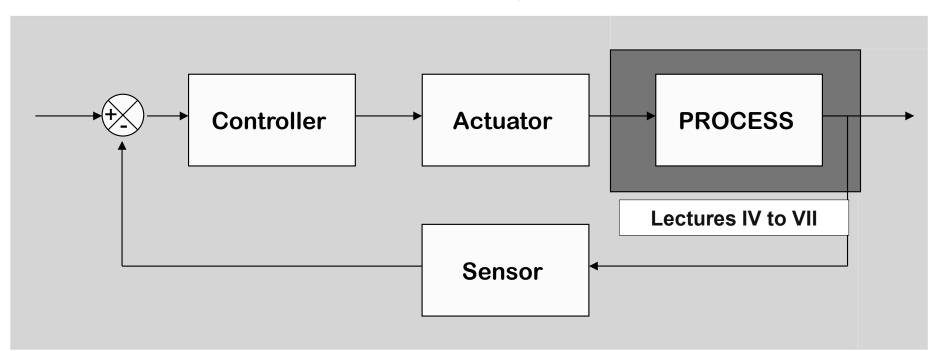
Professor Dae Ryook Yang

Fall 2021 Dept. of Chemical and Biological Engineering Korea University

CHBE320 Process Dynamics and Control

Road Map of the Lecture IV

Basics of Process Modeling



- Mathematical Modeling
- Steady-state model vs. Dynamic model
- Degree of freedom analysis
- Models of representative processes, etc.

CHBE320 Process Dynamics and Control

THE RATIONALE FOR MATHEMATICAL MODELING

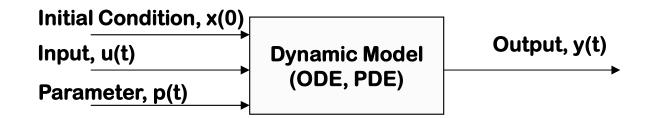
• Where to use

- To improve understanding of the process
- To train plant operating personnel
- To design the control strategy for a new process
- To select the controller setting
- To design the control law
- To optimize process operating conditions
- A Classification of Models
 - Theoretical models (based on physicochemical law)
 - Empirical models (based on process data analysis)
 - Semi-empirical models (combined approach)

DYNAMIC VERSUS STEADY-STATE MODEL

• Dynamic model

- Describes time behavior of a process
 - Changes in input, disturbance, parameters, initial condition, etc.
- Described by a set of differential equations
 - : ordinary (ODE), partial (PDE), differential-algebraic(DAE)



Steady-state model

- Steady state: No further changes in all variables
- No dependency in time: No transient behavior
- Can be obtained by setting the time derivative term zero

MODELING PRINCIPLES

- Conservation law
 - Within a defined system boundary (control volume)

$$\begin{bmatrix} \text{rate of} \\ \text{accumulation} \end{bmatrix} = \begin{bmatrix} \text{rate of} \\ \text{input} \end{bmatrix} - \begin{bmatrix} \text{rate of} \\ \text{output} \end{bmatrix} \\ + \begin{bmatrix} \text{rate of} \\ \text{generation} \end{bmatrix} - \begin{bmatrix} \text{rate of} \\ \text{disappreance} \end{bmatrix}$$

- Mass balance (overall, components)
- Energy balance
- Momentum or force balance
- Algebraic equations: relationships between variables and parameters

MODELING APPROACHES

Theoretical Model

- Follow conservation laws
- Based on physicochemical laws
- Variables and parameters have physical meaning
- Difficult to develop
- Can become quite complex
- Extrapolation is valid unless the physicochemical laws are invalid
- Used for optimization and rigorous prediction of the process behavior

- Empirical model
 - Based on the operation data
 - Parameters may not have physical meaning
 - Easy to develop
 - Usually quite simple
 - Requires well designed experimental data
 - The behavior is correct only around the experimental condition
 - Extrapolation is usually invalid
 - Used for control design and simplified prediction model

DEGREE OF FREEDOM (DOF) ANALYSIS

• DOF

- Number of variables that can be specified independently
- $\mathbf{N}_{\mathbf{F}} = \mathbf{N}_{\mathbf{V}} \mathbf{N}_{\mathbf{E}}$
 - N_F : Degree of freedom (no. of independent variables)
 - N_V : Number of variables
 - N_E : Number of equations (no. of dependent variables)
 - Assume no equation can be obtained by a combination of other equations

Solution depending on DOF

- If $N_F = 0$, the system is *exactly determined*. Unique solution exists.
- If N_F > 0, the system is *underdetermined*. Infinitely many solutions exist.
- If $N_F < 0$, the system is *overdetermined*. No solutions exist.

LINEAR VERSUS NONLINEAR MODELS

Superposition principle

 $\forall \alpha, \beta \in \Re$, and for a linear operator, *L* Then $L(\alpha x_1(t) + \beta x_2(t)) = \alpha L(x_1(t)) + \beta L(x_2(t))$

• Linear dynamic model: superposition principle holds

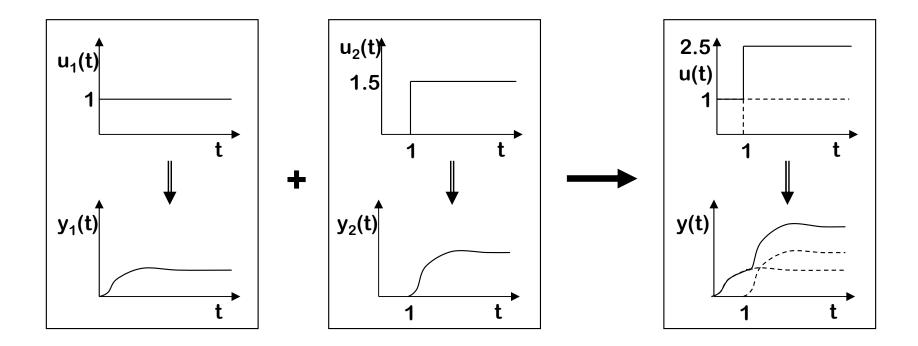
 $\begin{aligned} \forall \alpha, \beta \in \Re, u_1(t) \to y_1(t) \text{ and } u_2(t) \to y_2(t) \\ \alpha u_1(t) + \beta u_2(t) \to \alpha y_1(t) + \beta y_2(t) \end{aligned}$

 $\forall \alpha, \beta \in \Re, x_1(0) \to y_1(t) \text{ and } x_2(0) \to y_2(t)$ $\alpha x_1(0) + \beta x_2(0) \to \alpha y_1(t) + \beta y_2(t)$

- Easy to solve and analytical solution exists.
- Usually, locally valid around the operating condition
- Nonlinear: "Not linear"
 - Usually, hard to solve and analytical solution does not exist.

CHBE320 Process Dynamics and Control

ILLUSTRATION OF SUPERPOSITION PRINCIPLE



- Valid only for linear process
 - For example, if y(t)=u(t)²,

 $(u_1(t)+1.5u_2(t))^2$ is not same as $u_1(t)^2+1.5u_2(t)^2$.

TYPICAL LINEAR DYNAMIC MODEL

Linear ODE

 $\tau \frac{dy(t)}{dt} = -y(t) + Ku(t)$ (τ and K are contant, 1st order)

$$\frac{d^{n}y(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{0}y(t)$$

$$= b_m \frac{d^m u(t)}{dt^m} + b_{m-1} \frac{d^{m-1} u(t)}{dt^{m-1}} + \dots + b_0 u(t) \quad \text{(nth order)}$$

Nonlinear ODE

$$\tau \frac{dy(t)}{dt} = -y(t)^2 + Ku(t) \qquad \tau \frac{dy(t)}{dt}y(t) = -y(t)\sin(y) + Ku(t)$$

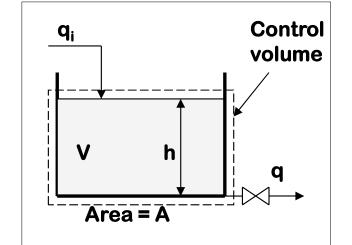
$$\tau \frac{dy(t)}{dt} = -y(t) + K\sqrt{u(t)} \qquad \tau \frac{dy(t)}{dt} = -e^{-y(t)} + Ku(t)$$

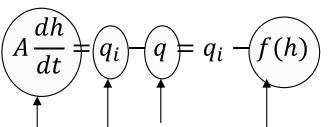
CHBE320 Process Dynamics and Control

MODELS OF REPRESENTATIVE PROCESSES

Liquid storage systems

- System boundary: storage tank
- Mass in: q_i (vol. flow, indep. var)
- Mass out: q (vol, flow, dep. var)
- No generation or disappearance (no reaction or leakage)
- No energy balance
- **DOF=2** (h, q_i) 1=1
- If $f(h) = h/R_V$, the ODE is linear. (R_V is the resistance to flow)
- If $f(h) = C_V \sqrt{\rho g h/g_c}$, the ODE is nonlinear. (C_V is the valve constant)





Mass out rate Outlet flow is a Mass in rate Accumulation rate in tank function of head

CHBE320 Process Dynamics and Control

Continuous Stirred Tank Reactor (CSTR)

- Liquid level is constant (No acc. in tank)
- Constant density, perfect mixing
- **Reaction:** $\mathbf{A} \rightarrow \mathbf{B}$ ($r = k_0 \exp(-E/RT)c_A$)
- System boundary: CSTR tank
- Component mass balance

$$V\frac{dc_A}{dt} = q(c_{Ai} - c_A) - Vkc_A$$

- Energy balance

$$V\rho C_p \frac{dT}{dt} = q\rho C_p (T_i - T) + (-\Delta H)Vkc_A + UA(T_c - T)$$

- **DOF** analysis
 - No. of variables: 6 $(q, c_A, c_{Ai}, T_i, T, T_c)$
 - No. of equation:2 (two dependent vars.: c_A , T)
 - DOF=6 2 = 4
 - Independent variables: 4 (q, c_{Ai} , T_i , T_c)
 - Parameters: kinetic parameters, V, U, A, other physical properties
 - Disturbances: any of q, c_{Ai} , T_i , T_c , which are not manipulatable

CHBE320 Process Dynamics and Control

STANDARD FORM OF MODELS

From the previous example

$$\frac{dc_A}{dt} = \frac{q}{V}(c_{Ai} - c_A) - kc_A = f_1(c_A, T, q, c_{Ai})$$

$$\frac{dT}{dt} = \frac{q}{V}(T_i - T) + \frac{q}{\rho C_p}(-\Delta H)kc_A + \frac{UA}{\rho C_p}(T_c - T) = f_2(c_A, T, q, T_c, T_i)$$

State-space model

$$\dot{\mathbf{x}} = d\mathbf{x}/dt = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

where $\mathbf{x} = [x_1, \dots, x_n]^T$, $\mathbf{u} = [u_1, \dots, u_m]^T$, $\mathbf{d} = [d_1, \dots, d_l]^T$

- **x: states,** $[c_A T]^T$
- u: inputs, $[q T_c]^T$
- d: disturbances, $[c_{Ai} T_i]^T$
- y: outputs can be a function of above, $y=g(x,d,u), [c_A T]^T$
- If higher order derivatives exist, convert them to 1st order.

CONVERT TO 1ST-ORDER ODE

• Higher order ODE

$$\frac{d^n x(t)}{dt^n} + a_{n-1} \frac{d^{n-1} x(t)}{dt^{n-1}} + \dots + a_0 x(t) = b_0 u(t)$$

• Define new states

$$x_1 = x, x_2 = \dot{x}, x_3 = \ddot{x}, \cdots, x_n = x^{(n-1)}$$

• A set of 1st-order ODE's

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_3 \\ &\vdots \\ \dot{x}_n &= -a_{n-1}x_n - a_{n-2}x_{n-1} - \dots - a_0x_1 + b_0u \end{aligned}$$

CHBE320 Process Dynamics and Control

SOLUTION OF MODELS

- ODE (state-space model)
 - Linear case: find the analytical solution via Laplace transform, or other methods.
 - Nonlinear case: analytical solution usually does not exist.
 - Use a numerical integration, such as <u>*RK method*</u>, by defining initial condition, time behavior of input/disturbance
 - Linearize around the operating condition and find the analytical solution
- PDE
 - Convert to ODE by discretization of spatial variables using *finite difference approximation* and etc.

$$\frac{\partial T_L}{\partial t} = -v \frac{\partial T_L}{\partial z} + \frac{1}{\tau_{HL}} (T_w - T_L) \longrightarrow \frac{dT_L(j)}{dt} = -\frac{v}{\Delta z} T_L(j-1) - \left(\frac{v}{\Delta z} + \frac{1}{\tau_{HL}}\right) T_L(j) + \frac{1}{\tau_{HL}} T_w \ (j = 1, \dots N)$$
$$\frac{\partial T_L}{\partial z} \approx \frac{T_L(j) - T_L(j-1)}{\Delta z}$$

CHBE320 Process Dynamics and Control

LINEARIZATION

- Equilibrium (Steady state)
 - Set the derivatives as zero: $0 = f(\bar{x}, \bar{u}, \bar{d})$
 - Overbar denotes the steady-state value and $(\bar{x}, \bar{u}, \bar{d})$ is the equilibrium point. (could be multiple)
 - Solve them analytically or numerically using *Newton method*, etc.
- Linearization around equilibrium point
 - Taylor series expansion to 1st order

$$\mathbf{f}(\mathbf{x},\mathbf{u}) = \mathbf{f}(\bar{\mathbf{x}},\bar{\mathbf{u}}) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\Big|_{(\bar{\mathbf{x}},\bar{\mathbf{u}})} (\mathbf{x}-\bar{\mathbf{x}}) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}\Big|_{(\bar{\mathbf{x}},\bar{\mathbf{u}})} (\mathbf{u}-\bar{\mathbf{u}}) + \cdots$$

- Ignore higher order terms
- Define deviation variables: $x' = x \bar{x}$, $u' = u \bar{u}$

$$\dot{\mathbf{x}}' = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{(\bar{\mathbf{x}}, \bar{\mathbf{u}})} \mathbf{x}' + \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \bigg|_{(\bar{\mathbf{x}}, \bar{\mathbf{u}})} \mathbf{u}' = \mathbf{A}\mathbf{x}' + \mathbf{B}\mathbf{u}'$$

