CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION

Professor Dae Ryook Yang

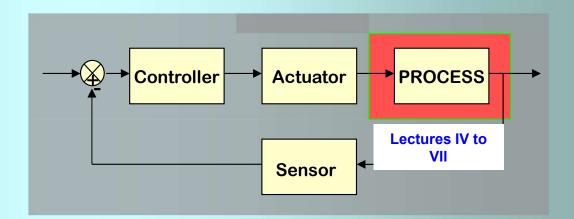
Fall 2021 Dept. of Chemical and Biological Engineering Korea University

CHBE320 Process Dynamics and Control

Road Map of the Lecture V

Laplace Transform and Transfer functions

- Definition of Laplace transform
- Properties of Laplace transform
- Inverse Laplace transform
- Definition of transfer function
- How to get the transfer functions
- Properties of transfer function



SOLUTION OF LINEAR ODE

1st-order linear ODE

- Integrating factor: For $\frac{dx}{dt} + a(t)x = f(t)$, I.F. = exp $(\int a(t)dt)$

 $[xe^{\int a(t)dt}]' = f(t)e^{\int a(t)dt} \longrightarrow x(t) = \left[\int f(t)e^{\int a(t)dt} dt + C\right]e^{-\int a(t)dt}$

High-order linear ODE with constant coeffs.

– Modes: roots of characteristic equation

For $a_2 x'' + a_1 x' + a_0 x = f(t)$,

 $a_2p^2 + a_1p + a_0 = a_2(p - p_1)(p - p_2) = 0$

- Depending on the roots, modes are
 - **Distinct roots:** (e^{-p_1t}, e^{-p_2t})
 - **Double roots:** (e^{-p_1t}, te^{-p_1t})
 - **Imaginary roots:** $(e^{-\alpha t} \cos \beta t, e^{-\alpha} \sin \beta t)$

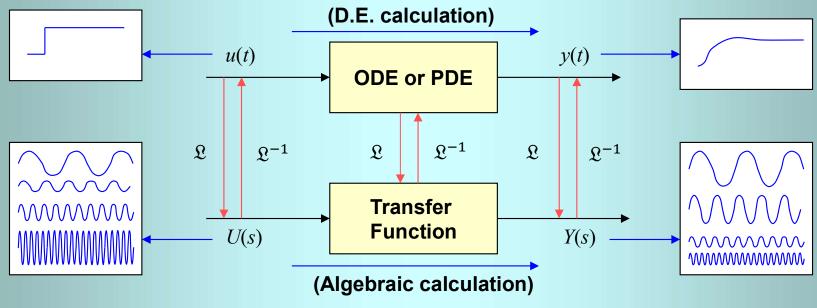
Many other techniques for different cases

Solution is a linear combination of modes and the coefficients are decided by the initial conditions.

LAPLACE TRANSFORM FOR LINEAR ODE AND PDE

Laplace Transform

- Not in time domain, rather in frequency domain
- Derivatives and integral become some operators.
- ODE is converted into algebraic equation
- PDE is converted into ODE in spatial coordinate
- Need inverse transform to recover time-domain solution



CHBE320 Process Dynamics and Control

Korea University 5-4

DEFINITION OF LAPLACE TRANSFORM

Definition

$$F(s) = \mathfrak{L}{f(t)} \triangleq \int_0^\infty f(t)e^{-st}dt$$

- F(s) is called *Laplace transform* of f(t).
- f(t) must be piecewise continuous.
- F(s) contains no information on f(t) for t < 0.
- The past information on f(t) (for t < 0) is irrelevant.
- The *s* is a complex variable called "*Laplace transform variable*"
- Inverse Laplace transform

 $f(t) = \mathfrak{L}^{-1}\{F(s)\}$

- \mathfrak{L} and \mathfrak{L}^{-1} are linear. $\mathfrak{L}\{af_1(t) + bf_2(t)\} = aF_1(s) + bF_2(s)$

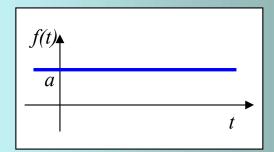
CHBE320 Process Dynamics and Control

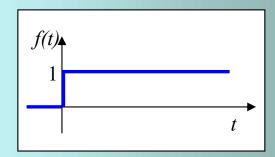
LAPLACE TRANSFORM OF FUNCTIONS

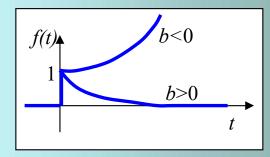
- **Constant function**, *a* $\mathfrak{L}\{a\} = \int_0^\infty ae^{-s} dt = -\frac{a}{s}e^{-st}\Big|_0^\infty = 0 - \left(-\frac{a}{s}\right) = \frac{a}{s}$
- Step function, S(t) $f(t) = S(t) = \begin{cases} 1 & \text{for } t \ge 0 \\ 0 & \text{for } t < 0 \end{cases}$

$$\mathfrak{L}\{S(t)\} = \int_0^\infty e^{-s} dt = -\frac{1}{s} e^{-s} \Big|_0^\infty = 0 - \left(-\frac{1}{s}\right) = \frac{1}{s}$$

$$\mathfrak{L}\{e^{-bt}\} = \int_0^\infty e^{-bt} e^{-s} dt = \frac{-1}{s+b} e^{-(b+s)t} \Big|_0^\infty = \frac{1}{s+b}$$

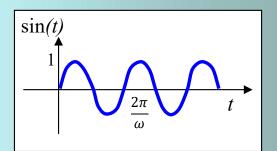






- Trigonometric functions
 - **Euler's Identity:** $e^{j\omega t} \triangleq \cos \omega t + j \sin \omega t$

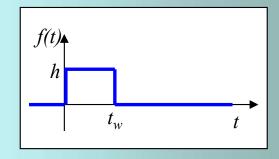
 $\cos \omega t = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right) \qquad \sin \omega t = \frac{1}{2j} \left(e^{j\omega t} - e^{-j\omega t} \right)$



$$\mathfrak{L}\{\sin\omega t\} = \mathfrak{L}\left\{\frac{1}{2j}e^{j\omega t}\right\} - \mathfrak{L}\left\{\frac{1}{2j}e^{-j\omega t}\right\} = \frac{1}{2j}\left(\frac{1}{s-j\omega} - \frac{1}{s+j\omega}\right) = \frac{\omega}{s^2 + \omega^2}$$
$$\mathfrak{L}\{\cos\omega t\} = \mathfrak{L}\left\{\frac{1}{2}e^{j\omega t}\right\} + \mathfrak{L}\left\{\frac{1}{2}e^{-j\omega t}\right\} = \frac{1}{2}\left(\frac{1}{s-j\omega} + \frac{1}{s+j\omega}\right) = \frac{s}{s^2 + \omega^2}$$

• Rectangular pulse, P(t)

$$f(t) = P(t) = \begin{cases} 0 & \text{for } t > t_w \\ h & \text{for } t_w \ge t \ge 0 \\ 0 & \text{for } t < 0 \end{cases}$$



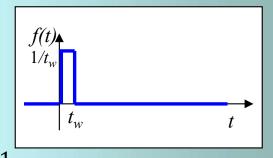
$$\mathfrak{L}\{P(t)\} = \int_0^{t_w} h e^{-st} dt = -\frac{h}{s} e^{-st} \Big|_0^{t_w} = \frac{h}{s} (1 - e^{-t_w s})$$

5-7

CHBE320 Process Dynamics and Control

• Impulse function, $\delta(t)$

$$f(t) = \delta(t) = \lim_{t_w \to 0} \begin{cases} 0 & \text{for } t > t_w \\ 1/t_w & \text{for } t_w \ge t \ge 0 \\ 0 & \text{for } t < 0 \end{cases}$$



$$\mathfrak{L}\{\delta(t)\} = \lim_{t_w \to 0} \int_0^{t_w} \frac{1}{t_w} e^{-st} dt = \lim_{t_w \to 0} \frac{1}{t_w s} (1 - e^{-t_w s}) = \left(L' \text{Hospital's rule:} \lim_{t \to 0} \frac{f(t)}{g(t)} = \lim_{t \to 0} \frac{f'(t)}{g'(t)} \right)$$

• Ramp function, t

$$\mathfrak{L}\{t\} = \int_0^\infty te^{-st} dt$$
$$= \frac{t}{-s} e^{-s} \Big|_0^\infty - \int_0^\infty \frac{e^{-s}}{-s} dt = \frac{1}{s} \int_0^\infty e^{-s} dt = \frac{1}{s^2}$$
$$\left(\text{Integration by part: } \int_0^\infty f' \cdot g dt = f \cdot g \Big|_0^\infty - \int_0^\infty f \cdot g' dt \right)$$

• Refer the Table 3.1 (Seborg et al.) for other functions

nctions ⁴	F(s)								$(s + b_2)$	$\frac{1}{(\tau_{1}s + 1)(\tau_{2}s + 1)}$	$\frac{b_3}{s+b_2)}$	$\frac{+1}{(\tau_2 s + 1)}$		
Laplace Transforms for Various Time-Domain Functions ⁴			- <mark></mark>	$\frac{(n-1)!}{2^n}$	$\frac{1}{s+b}$	$\frac{1}{1s+1}$	$\frac{1}{(s+b)^n}$	$\frac{1}{(\tau s + 1)^n}$	$\frac{1}{(s+b_1)(s+b_2)}$	$\frac{1}{(\tau_{1}s + 1)}$			$\frac{1}{s(\tau s+1)}$	$\frac{\omega}{s^2 + \omega^2}$
	f(t)	(unit impulse) (unit step)	(ramp)			/۲	$\frac{t^{n-1}e^{-bt}}{(n-1)!} (n>0)$	$\frac{1}{\tau^n(n-1)!}t^{n-1}e^{-t/\tau}$	$\frac{1}{b_1-b_2}\left(e^{-b_{2^i}}-e^{-b_1t}\right)$	$\frac{1}{\tau_1 - \tau_2} \left(e^{-i \tau_1} - e^{-i \tau_2} \right)$	$\frac{b_3 - b_1}{b_2 - b_1} e^{-b_1 t} + \frac{b_3 - b_2}{b_1 - b_2} e^{-b_2 t}$	$\frac{1}{\tau_1} \frac{\tau_1 - \tau_3}{\tau_1 - \tau_2} e^{-i/\tau_1} + \frac{1}{\tau_2} \frac{\tau_2 - \tau_3}{\tau_2 - \tau_1} e^{-i/\tau_2}$	e - 1/7	1
Table 3.1		 δ(t) S(t) 	3. t	4. t ⁿ⁻¹	5. e ^{-bı}	6. <u>1</u> e-1/1	7. $\frac{t^{n-1}e^{-bt}}{(n-1)!}$	$\frac{8}{\tau^n(n)}$	9. $\frac{1}{b_1 - 1}$				$\cdot 1 - e^{-t/\tau}$. sin wt
	Ił			-		-	•	~	Ú,	10.	11.	12.	13.	14.

CHBE320 Process Dynamics and Control

 $s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f^{(1)}(0) - s^{p-2}f^{(1)}(0) - s^{p-1}f^{(n-1)}(0)$ F(s) $s(\tau_1 s + 1)(\tau_2 s + 1)$ $s(\tau_1 s + 1)(\tau_2 s + 1)$ $\frac{s(\tau^2 s^2 + 2\zeta \tau s + 1)}{s(\tau^2 s^2 + 2\zeta \tau s + 1)}$ $s(\tau^2 s^2 + 2\zeta \tau s + 1)$ $\omega \cos \phi + s \sin \phi$ $\frac{\omega}{(s+b)^2+\omega^2}$ $(s+b)^2+\omega^2$ $\tau^2 s^2 + 2\xi \tau s +$ $\tau_{3} S + 1$ $s^2 + \omega^2$ sF(s) - f(0)s + b $s^2 + \omega^2$ 5 $\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta t/\tau} \sin[\sqrt{1-\zeta^2}t/\tau + \psi]$ ^aNote that f(t) and F(s) are defined for $t \ge 0$ only. -1/72 $-\zeta^2 t/\tau$ b, ω real $+\frac{\zeta}{\sqrt{1-\zeta^2}}\sin(\sqrt{1-\zeta^2}t/\tau)]$ $\frac{1}{\tau_2 - \tau_1} \left(\tau_1 e^{-i/\tau_1} - \tau_2 e^{-i/\tau_2} \right)$ $\frac{\tau_3-\tau_2}{e}$ $e^{-\xi t/\tau} \left[\cos(\sqrt{1-\zeta^2} t/\tau)\right]$ $\tau_2 - \tau_1$ $\frac{1}{1-\zeta^2} e^{-\xi t/\tau} \sin(\sqrt{1})$ $(0 \le |\xi| < 1)$ $\psi = \tan^{-1} \frac{\sqrt{1-\zeta^2}}{2}$ $\tau_3 - \tau_1 e^{-t/\tau_1} +$ Ē $(0 \le |\zeta| < 1)$ $(0 \le |\zeta| < 1)$ Table 3.1 (Continued) $(\tau_1 \neq \tau_2)$ $\sin(\omega t + \phi)$ $(\tau_1\neq\tau_2)$ $\tau_1 - \tau_2$ e^{-br} cos wt e-bi sin wt cos wt ----+ + $\frac{d^n f}{dt^n}$ dt |d _ — ----15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.

CHBE320 Process Dynamics and Control

PROPERTIES OF LAPLACE TRANSFORM

Differentiation

$$\mathfrak{L}\left\{\frac{df}{dt}\right\} = \int_0^\infty f' \cdot e^{-st} dt = f(t)e^{-st}\Big|_0^\infty - \int_0^\infty f \cdot (-s)e^{-st} dt \qquad (by \, i. \, b. \, p.)$$
$$= s\int_0^\infty f \cdot e^{-st} dt - f(0) = sF(s) - f(0)$$

$$\mathfrak{L}\left\{\frac{d^2f}{dt^2}\right\} = \int_0^\infty f'' \cdot e^{-s} dt = f(t)'e^{-s} \Big|_0^\infty - \int_0^\infty f' \cdot (-s)e^{-st} dt = s \int_0^\infty f' \cdot e^{-st} dt - f'(0)$$
$$= s(sF(s) - f(0)) - f'(0) = s^2F(s) - sf(0) - f'(0)$$

$$\begin{aligned} \mathfrak{L}\left\{\frac{d^{n}f}{dt^{n}}\right\} &= \int_{0}^{\infty} f^{(n)} \cdot e^{-st} dt = f(t)^{(n-1)} e^{-st} \Big|_{0}^{\infty} - \int_{0}^{\infty} f^{(n-1)} \cdot (-s) e^{-st} dt \\ &= s \int_{0}^{\infty} f^{(n-1)} \cdot e^{-st} dt - f^{(n-1)}(0) = s \left(\mathfrak{L}\left\{\frac{d^{n-1}f}{dt^{n-1}}\right\}\right) - f^{(n-1)}(0) \\ &= s^{n} F(s) - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0) \end{aligned}$$

CHBE320 Process Dynamics and Control

- If $f(0) = f'(0) = f''(0) = \dots = f^{(n-1)}(0) = 0$,
 - Initial condition effects are vanished.
 - It is very convenient to use deviation variables so that all the effects of initial condition vanish.

$$\mathfrak{L}\left\{\frac{df}{dt}\right\} = sF(s)$$
$$\mathfrak{L}\left\{\frac{d^2f}{dt^2}\right\} = s^2F(s)$$
$$\vdots$$
$$\mathfrak{L}\left\{\frac{d^nf}{dt^n}\right\} = s^nF(s)$$

Transforms of linear differential equations.

$$\frac{y(t) \xrightarrow{\mathfrak{L}} Y(s), \qquad u(t) \xrightarrow{\mathfrak{L}} U(s)}{\frac{dy(t)}{dt} \xrightarrow{\mathfrak{L}} sY(s) \quad (\text{if } y(0) = 0)$$

$$\tau \frac{dy(t)}{dt} = -y(t) + Ku(t) \ (y(0) = 0) \xrightarrow{\mathfrak{L}} (\tau s + 1)Y(s) = KU(s)$$

$$\frac{\partial T_L}{\partial t} = -v \frac{\partial T_L}{\partial z} + \frac{1}{\tau_{HL}} (T_w - T_L) \xrightarrow{\mathfrak{L}} \tau_{HL} v \frac{\partial \tilde{T}_L(s)}{\partial z} + (\tau_{HL}s + 1) \tilde{T}_L(s) = \tilde{T}_w(s)$$

CHBE320 Process Dynamics and Control

Integration

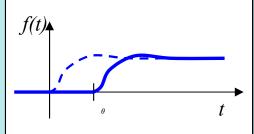
$$\mathfrak{L}\left\{\int_{0}^{t} f(\xi)d\xi\right\} = \int_{0}^{\infty} \left(\int_{0}^{t} f(\xi)d\xi\right) e^{-st}dt$$

$$= \frac{e^{-st}}{-s} \int_{0}^{t} f(\xi)d\xi \Big|_{0}^{\infty} + \frac{1}{s} \int_{0}^{\infty} f \cdot e^{-s} dt = \frac{F(s)}{s} \quad (by \, i. \, b. \, p.)$$

$$\left(\text{Leibniz rule:} \quad \frac{d}{dt} \int_{a(t)}^{b(t)} f(\tau)d\tau = f(b(t)) \frac{db(t)}{dt} - f(a(t)) \frac{da(t)}{dt}\right)$$

• Time delay (Translation in time)

$$f(t) \xrightarrow{+\theta \text{ in} t} f(t-\theta) \operatorname{S}(t-\theta)$$



$$\mathfrak{L}\{f(t-\theta)\,\mathsf{S}(\,t-\theta)\} = \int_{\theta}^{\infty} f(t-\theta)e^{-st}dt = \int_{0}^{\infty} f(\tau)e^{-s(\tau+\theta)}d\tau \quad (\operatorname{let}\tau = t-\theta)$$
$$= e^{-\theta s} \int_{0}^{\infty} f(\tau)e^{-\tau s}d\tau = e^{-\theta s}F(s)$$

• **Derivative of Laplace transform** $\frac{dF(s)}{ds} = \frac{d}{ds} \int_0^\infty f \cdot e^{-st} dt = \int_0^\infty f \cdot \frac{d}{ds} e^{-st} dt = \int_0^\infty (-t \cdot f) e^{-st} dt = \mathfrak{L}[-t \cdot f(t)]$

CHBE320 Process Dynamics and Control

- Final value theorem
 - From the LT of differentiation, as s approaches to zero

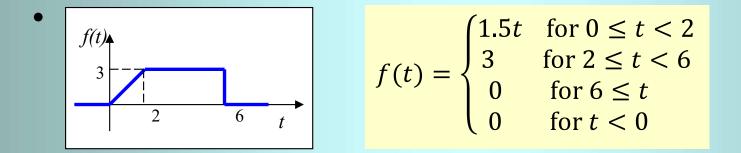
$$\lim_{s \to 0} \int_0^\infty \frac{df}{dt} \cdot e^{-s} dt = \int_0^\infty \frac{df}{dt} \cdot \lim_{s \to 0} e^{-s} dt = \lim_{s \to 0} [sF(s) - f(0)]$$
$$\int_0^\infty \frac{df}{dt} dt = f(\infty) - f(0) = \lim_{s \to 0} sF(s) - f(0) \Rightarrow f(\infty) = \lim_{s \to 0} sF(s)$$

- Limitation: $f(\infty)$ has to exist. If it diverges or oscillates, this theorem is not valid.
- Initial value theorem
 - From the LT of differentiation, as *s* approaches to infinity

$$\lim_{s \to \infty} \int_0^\infty \frac{df}{dt} \cdot e^{-s} dt = \lim_{s \to \infty} [sF(s) - f(0)]$$
$$\lim_{s \to \infty} \int_0^\infty \frac{df}{dt} e^{-s} dt = 0 = \lim_{s \to \infty} sF(s) - f(0) \Rightarrow f(0) = \lim_{s \to \infty} sF(s)$$

CHBE320 Process Dynamics and Control

EXAMPLE ON LAPLACE TRANSFORM (1)



$$f(t) = 1.5t S(t) - 1.5(t-2) S(t-2) - 3 S(t-6)$$

$$\therefore F(s) = \mathfrak{L}{f(t)} = \frac{1.5}{s^2} (1 - e^{-2s}) - \frac{3}{s} e^{-6}$$

• For
$$F(s) = \frac{2}{s-5}$$
, find $f(0)$ and $f(\infty)$.

- Using the initial and final value theorems

$$f(0) = \lim_{s \to \infty} s F(s) = \lim_{s \to \infty} \frac{2s}{s-5} = 2 \qquad f(\infty) = \lim_{s \to 0} s F(s) = \lim_{s \to 0} \frac{2s}{s-5} = 0$$

- But the final value theorem is not valid because $\lim_{t\to\infty} f(t) = \lim_{t\to\infty} 2e^{5t}$ CHBE320 Process=Dynamics and Control

Korea University 5-15

EXAMPLE ON LAPLACE TRANSFORM (2)

What is the final value of the following system?

$$x'' + x' + x = \sin t; \ x(0) = x'(0) = 0$$

$$\Rightarrow \ s^2 X(s) + s X(s) + X = \frac{1}{s^2 + 1} \Rightarrow \ x(s) = \frac{1}{(s^2 + 1)(s^2 + s + 1)}$$

$$x(\infty) = \lim_{s \to 0} \frac{s}{(s^2 + 1)(s^2 + s + 1)} = 0$$

- Actually, $x(\infty)$ cannot be defined due to sin *t* term.
- Find the Laplace transform for $(t \sin \omega t)$?

From
$$\frac{dF(s)}{ds} = \mathfrak{L}[-t \cdot f(t)]$$

 $\mathfrak{L}[t \cdot \sin \omega t] = -\frac{d}{ds} \left[\frac{\omega}{s^2 + \omega^2}\right] = \frac{2\omega s}{(s^2 + \omega^2)^2}$

CHBE320 Process Dynamics and Control

INVERSE LAPLACE TRANSFORM

Used to recover the solution in time domain

$$\mathfrak{L}^{-1}\{F(s)\} = f(t)$$

- From the table
- By partial fraction expansion
- By inversion using contour integral

$$f(t) = \mathfrak{L}^{-1}{F(s)} = \frac{1}{2\pi j} \oint_C e^{st} F(s) ds$$

- Partial fraction expansion
 - After the partial fraction expansion, it requires to know some simple formula of inverse Laplace transform such as

$$\frac{1}{(\tau s+1)}, \frac{s}{(s+b)^2 + \omega^2}, \frac{(n-1)!}{s^n}, \frac{e^{-\theta}}{\tau^2 s^2 + 2\zeta \tau s + 1}, \text{ etc.}$$

PARTIAL FRACTION EXPANSION

$$F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s+p_1)\cdots(s+p_n)} = \frac{\alpha_1}{(s+p_1)} + \dots + \frac{\alpha_n}{(s+p_n)}$$

- Case I: All p_i's are distinct and real
 - By a root-finding technique, find all roots (time-consuming)
 - Find the coefficients for each fraction
 - Comparison of the coefficients after multiplying the denominator
 - Replace some values for s and solve linear algebraic equation
 - Use of Heaviside expansion
 - Multiply both side by a factor, $(s+p_i)$, and replace s with $-p_i$.

$$\alpha_i = (s + p_i) \frac{N(s)}{D(s)} \bigg|_{s = -p_i}$$

- Inverse LT:

$$f(t) = \alpha_1 e^{-p_1 t} + \alpha_2 e^{-p_2 t} + \dots + \alpha_n e^{-p_n t}$$

CHBE320 Process Dynamics and Control

Case II: Some roots are repeated

$$F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s+p)^r} = \frac{b_{r-1}s^{r-1} + \dots + b_0}{(s+p)^r} = \frac{\alpha_1}{(s+p)} + \dots + \frac{\alpha_r}{(s+p)^r}$$

- Each repeated factors have to be separated first.
- Same methods as Case I can be applied.
- Heaviside expansion for repeated factors

$$\alpha_{r-i} = \frac{1}{i!} \frac{d^{(i)}}{ds^{(i)}} \left(\frac{N(s)}{D(s)} (s+p)^r \right) \bigg|_{s=-p} \quad (i=0,\cdots,r-1)$$

– Inverse LT

$$f(t) = \alpha_1 e^{-pt} + \alpha_2 t e^{-pt} + \dots + \frac{\alpha_r}{(r-1)!} t^{r-1} e^{-pt}$$

• Case III: Some roots are complex

$$F(s) = \frac{N(s)}{D(s)} = \frac{c_1 s + c_0}{s^2 + d_1 s + d_0} = \frac{\alpha_1 (s+b) + \beta_1 \omega}{(s+b)^2 + \omega^2}$$

Each repeated factors have to be separated first.
Then,

$$\frac{\alpha_1(s+b) + \beta_1 \omega}{(s+b)^2 + \omega^2} = \alpha_1 \frac{(s+b)}{(s+b)^2 + \omega^2} + \beta_1 \frac{\omega}{(s+b)^2 + \omega^2}$$

where $b = d_1/2$, $\omega = \sqrt{d_0 - d_1^2/4}$

$$\alpha_1 = c_1, \qquad \beta_1 = (c_0 - \alpha_1 b)/\omega$$

– Inverse LT

$$f(t) = \alpha_1 e^{-b} \cos \omega t + \beta_1 e^{-bt} \sin \omega t$$

CHBE320 Process Dynamics and Control

EXAMPLES ON INVERSE LAPLACE TRANSFORM

• $F(s) = \frac{(s+5)}{s(s+1)(s+2)(s+3)} = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+2} + \frac{D}{s+3}$ (distinct)

- Multiply each factor and insert the zero value

$$\frac{(s+5)}{(s+1)(s+2)(s+3)}\Big|_{s=0} = \left(A + s\frac{B}{s+1} + s\frac{C}{s+2} + s\frac{D}{s+3}\right)\Big|_{s=0} \Rightarrow A = 5/6$$

$$\frac{(s+5)}{s(s+2)(s+3)}\Big|_{s=-1} = \left(\frac{A(s+1)}{s} + B + \frac{C(s+1)}{s+2} + \frac{D(s+1)}{s+3}\right)\Big|_{s=-1} \Rightarrow B = -2$$

$$\frac{(s+5)}{s(s+1)(s+3)}\Big|_{s=-2} = \left(\frac{A(s+2)}{s} + \frac{B(s+2)}{s+1} + C + \frac{D(s+2)}{s+3}\right)\Big|_{s=-2} \Rightarrow C = 3/2$$

$$\frac{(s+5)}{s(s+1)(s+2)}\Big|_{s=-3} = \left(\frac{A(s+3)}{s} + \frac{B(s+3)}{s+1} + \frac{C(s+3)}{s+2} + D\right)\Big|_{s=-3} \Rightarrow D = -1/3$$

$$\therefore f(t) = \mathfrak{L}^{-1}\{F(s)\} = \frac{5}{6} - 2e^{-t} + \frac{3}{2}e^{-2t} - \frac{1}{3}e^{-3t}$$

CHBE320 Process Dynamics and Control

•
$$F(s) = \frac{1}{(s+1)^3(s+2)} = \frac{As^2 + Bs + C}{(s+1)^3} + \frac{D}{(s+2)} \quad (\text{repeated})$$

$$1 = (As^2 + Bs + C)(s+2) + D(s+1)^3$$

$$= (A+D)s^3 + (2A+B+3D)s^2 + (2B+C+3D)s + (2C+D)$$

$$\therefore A = -D, \quad 2A+B+3D = 0, \quad 2B+C+3D = 0, \quad 2C+D = 1$$

$$\Rightarrow A = 1, \quad B = 1, \quad C = 1, \quad D = -1$$

$$- \text{ Use of Heaviside expansion} \quad a_{r-i} = \frac{1}{1!} \frac{d^{(i)}}{ds^{(i)}} \left(\frac{N(s)}{D(s)}(s+p)^r\right) \Big|_{s=-p} \quad (i = 0, \dots, r-1)$$

$$\frac{s^2 + s + 1}{(s+1)^3} = \frac{\alpha_1}{(s+1)} + \frac{\alpha_2}{(s+1)^2} + \frac{\alpha_3}{(s+1)^3}$$

$$(i = 0): \alpha_3 = (s^2 + s + 1) \Big|_{s=-1} = 1$$

$$(i = 1): \alpha_2 = \frac{1}{2!} \frac{d}{ds^2} (s^2 + s + 1) \Big|_{s=-1} = -1$$

$$(i = 2): \alpha_1 = \frac{1}{2!} \frac{d^2}{ds^2} (s^2 + s + 1) \Big|_{s=-1} = 1$$

$$\therefore f(t) = \Re^{-1} \{F(s)\} = e^{-t} - te^{-t} + \frac{1}{2} t^2 e^{-t} - e^{-2}$$

CHBE320 Process Dynamics and Control

•
$$F(s) = \frac{(s+1)}{s^2(s^2+4s+5)} = \frac{A(s+2)+B}{(s+2)^2+1} + \frac{Cs+D}{s^2}$$
 (complex)

$$s + 1 = A(s + 2)s^{2} + Bs^{2} + (Cs + D)(s^{2} + 4s + 5)$$

= (A + C)s^{3} + (2A + B + 4C + D)s^{2} + (5C + 4D)s + 5D

 $\therefore A = -C, \qquad 2A + B + 4C + D = 0, \qquad 5C + 4D = 1, \qquad 5D = 1$ $\Rightarrow A = -1/25, \qquad B = -7/25, \qquad C = 1/25, \qquad D = 1/5$ $\frac{A(s+2) + B}{(s+2)^2 + 1} = -\frac{1}{25} \frac{(s+2)}{(s+2)^2 + 1} - \frac{7}{25} \frac{B}{(s+2)^2 + 1}$

$$\frac{Cs+D}{s^2} = \frac{1}{25}\frac{1}{s} + \frac{1}{5}\frac{1}{s^2}$$

$$\therefore f(t) = \mathfrak{L}^{-1}\{F(s)\} = -\frac{1}{25}e^{-2t}\cos t - \frac{7}{25}e^{-2}\sin t + \frac{1}{25} + \frac{1}{5}t$$

CHBE320 Process Dynamics and Control

•
$$F(s) = \frac{1 + e^{-2s}}{(4s+1)(3s+1)} = \left(\frac{A}{4s+1} + \frac{B}{3s+1}\right)(1 + e^{-2})$$
 (Time delay)

$$A = 1/(3s+1)\Big|_{s=-1/4} = 4, \qquad B = 1/(4s+1)\Big|_{s=-1/3} = -3$$

$$\therefore f(t) = \mathfrak{L}^{-1}\{F(s)\} = \mathfrak{L}^{-1}\left\{\frac{4}{4s+1} - \frac{3}{3s+1}\right\} + \mathfrak{L}^{-1}\left\{\frac{4e^{-2s}}{4s+1} - \frac{3e^{-2}}{3s+1}\right\}$$
$$= e^{-t/4} - e^{-t/3} + \left(e^{-(t-2)/4} - e^{-(t-2)/3}\right)S(t-2)$$

Korea University 5-24

CHBE320 Process Dynamics and Control

SOLVING ODE BY LAPLACE TRANSFORM

Procedure

- 1. Given linear ODE with initial condition,
- 2. Take Laplace transform and solve for output
- 3. Inverse Laplace transform
- **Example:** Solve for $5\frac{dy}{dt} + 4y = 2$; y(0) = 1

$$\mathfrak{L}\left\{5\frac{dy}{dt}\right\} + \mathfrak{L}\left\{4y\right\} = \mathfrak{L}\left\{2\right\} \implies 5(sY(s) - y(0)) + 4Y(s) = \frac{2}{s}$$

$$(5s+4)Y(s) = \frac{2}{s} + 5 \implies Y(s) = \frac{5s+2}{s(5s+4)}$$

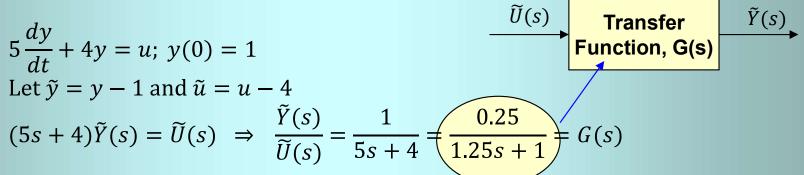
$$\therefore y(t) = \mathfrak{L}^{-1}\{Y(s)\} = \mathfrak{L}^{-1}\left\{\frac{0.5}{s} + \frac{2.5}{5s+4}\right\} = 0.5 + 0.5e^{-0.8t}$$

CHBE320 Process Dynamics and Control

TRANSFER FUNCTION (1)

Definition

An algebraic expression for the dynamic relation between the input and output of the process model



- How to find transfer function
 - 1. Find the equilibrium point
 - 2. If the system is nonlinear, then linearize around equil. point
 - **3. Introduce deviation variables**
 - 4. Take Laplace transform and solve for output
 - 5. Do the Inverse Laplace transform and recover the original variables from deviation variables

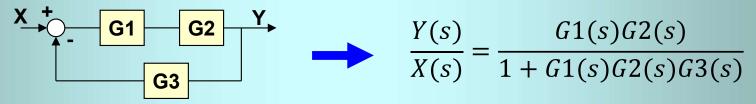
TRANSFER FUNCTION (2)

Benefits

- Once TF is known, the output response to various given inputs can be obtained easily.

 $y(t) = \mathfrak{L}^{-1}\{Y(s)\} = \mathfrak{L}^{-1}\{G(s)U(s)\} \neq \mathfrak{L}^{-1}\{G(s)\}\mathfrak{L}^{-1}\{U(s)\}$

- Interconnected system can be analyzed easily.
 - By block diagram algebra



- Easy to analyze the qualitative behavior of a process, such as stability, speed of response, oscillation, etc.
 - By inspecting "Poles" and "Zeros"
 - **Poles: all** *s*'s satisfying *D*(*s*)=0
 - Zeros: all s's satisfying N(s)=0

TRANSFER FUNCTION (3)

Steady-state Gain: The ratio between ultimate changes in input and output

Gain= $K = \frac{\Delta \text{ouput}}{\Delta \text{input}} = \frac{(y(\infty) - y(0))}{(u(\infty) - u(0))}$

- For a unit step change in input, the gain is the change in output
- Gain may not be definable: for example, integrating processes and processes with sustaining oscillation in output
- From the final value theorem, unit step change in input with zero initial condition gives

$$K = \frac{y(\infty)}{1} = \lim_{s \to 0} s Y(s) = \lim_{s \to 0} s G(s) \frac{1}{s} = \lim_{s \to 0} G(s)$$

- The transfer function itself is an impulse response of the system $Y(s) = G(s)U(s) = G(s)\mathfrak{L}{\delta(t)} = G(s)$

CHBE320 Process Dynamics and Control

EXAMPLE

Horizontal cylindrical storage tank (Ex4.7)

$$\frac{dm}{dt} = \rho \frac{dV}{dt} = \rho q_i - \rho q$$

$$V(h) = \int_0^h Lw_i(\tilde{h})d\tilde{h} \Rightarrow \frac{dV}{dt} = Lw_i(h)\frac{dh}{dt}$$

$$w_i(h)/2 = \sqrt{R^2 - (R - h)^2} = \sqrt{(2R - h)h}$$

$$w_iL\frac{dh}{dt} = q_i - q \Rightarrow \frac{dh}{dt} = \frac{1}{2L\sqrt{(D - h)h}}(q_i - q) \text{ (Nonlinear ODE)}$$

$$- \text{ Equilibrium point: } (\bar{q}_i, \bar{q}, \bar{h}) \qquad 0 = (\bar{q}_i - \bar{q})/(2L\sqrt{(D - \bar{h})\bar{h}})$$

$$(\text{if } \bar{q}_i = \bar{q}, \bar{h} \text{ can be any value in } 0 \le \bar{h} \le D.)$$

- Linearization:

$$\frac{dh}{dt} = f(h, q_i, q) = \frac{\partial f}{\partial h} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (h - \bar{h}) + \frac{\partial f}{\partial q_i} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q_i - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q}_i) + \frac{\partial f}{\partial q} \Big|_{(\bar{h}, \bar{q}, \bar{q})} + \frac{\partial f}{\partial q} \Big|_{$$

CHBE320 Process Dynamics and Control

$$\frac{\partial f}{\partial h}\Big|_{(\bar{h},\bar{q}_{i},\bar{q})} = (\bar{q}_{i} - \bar{q})\frac{\partial}{\partial h}\frac{-1}{2L\sqrt{(D-h)h}} = 0 \quad (\because \bar{q}_{i} = \bar{q})$$
Let this term be k

$$\frac{\partial f}{\partial q}\Big|_{(\bar{h},\bar{q}_{i},\bar{q})} = \frac{-1}{2L\sqrt{(D-\bar{h})\bar{h}}}, \qquad \frac{\partial f}{\partial q_{i}}\Big|_{(\bar{h},\bar{q}_{i},\bar{q})} = \frac{1}{2L\sqrt{(D-\bar{h})\bar{h}}}$$

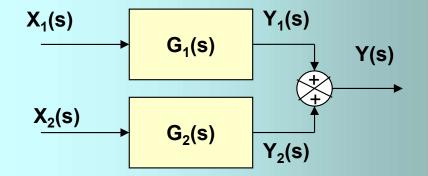
$$s\tilde{H}(s) = k\tilde{Q}_{i}(s) - k\tilde{Q}(s)$$
Transfer function between $\tilde{H}(s)$ and $\tilde{Q}(s)$: $-\frac{k}{s}$ (integrating)
Transfer function between $\tilde{H}(s)$ and $\tilde{Q}_{i}(s)$: $\frac{k}{s}$ (integrating)

- If \bar{h} is near 0 or D, k becomes very large and \bar{h} is around D/2, k becomes minimum.
- ⇒ The model could be quite different depending on the operating condition used for the linearization.
- \Rightarrow The best suitable range for the linearization in this case is around D/2. (less change in gain)
- ⇒ Linearized model would be valid in very narrow range near 0.

PROPERTIES OF TRANSFER FUNCTION

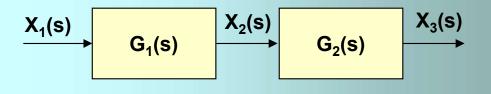
Additive property

 $Y(s) = Y_1(s) + Y_2(s)$ $= G_1(s)X_1(s) + G_2(s)X_2(s)$



Multiplicative property

 $X_3(s) = G_2(s)X_2(s)$ $= G_2(s)[G_1(s)X_1(s)]$



Physical realizability

- In a transfer function, the order of numerator(m) is greater than that of denominator(n): called "physically unrealizable"
- The order of derivative for the input is higher than that of output. (requires future input values for current output)

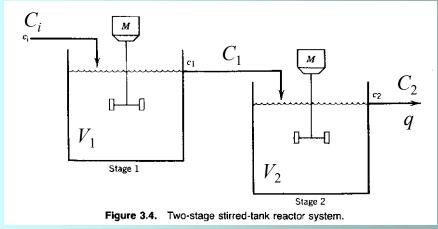
EXAMPLES ON TWO TANK SYSTEM

• Two tanks in series (Ex3.7)

No reaction

$$V_1 \frac{dc_1}{dt} + qc_1 = qc_i$$

$$V_2 \frac{dc_2}{dt} + qc_2 = qc_1$$



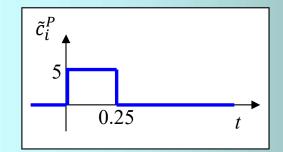
- Initial condition: $c_1(0) = c_2(0) = 1 \text{ kg mol/m}^3$ (Use deviation var.)
- **Parameters:** $V_1/q=2$ min., $V_2/q=1.5$ min.
- Transfer functions

$$\frac{\tilde{C}_1(s)}{\tilde{C}_i(s)} = \frac{1}{(V_1/q)s+1} \qquad \qquad \frac{\tilde{C}_2(s)}{\tilde{C}_1(s)} = \frac{1}{(V_2/q)s+1}$$
$$\frac{\tilde{C}_2(s)}{\tilde{C}_i(s)} = \frac{\tilde{C}_2(s)}{\tilde{C}_1(s)}\frac{\tilde{C}_1(s)}{\tilde{C}_i(s)} = \frac{1}{((V_2/q)s+1)((V_1/q)s+1)}$$

CHBE320 Process Dynamics and Control

Pulse input

$$\tilde{C}_i^P(s) = \frac{5}{s} (1 - e^{-0.25s})$$



Equivalent impulse input

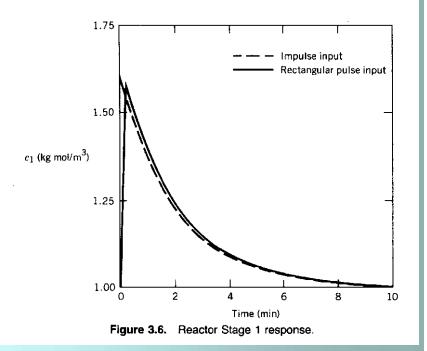
 $\tilde{C}_i^{\delta}(s) = \mathfrak{L}\{(5 \times 0.25)\delta(t)\} = 1.25$

Pulse response vs. Impulse response

$$\tilde{C}_{1}^{P}(s) = \frac{1}{2s+1} \tilde{C}_{i}^{P}(s) = \frac{5}{s(2s+1)} (1 - e^{-0.25s})$$
$$= \left(\frac{5}{s} - \frac{10}{2s+1}\right) (1 - e^{-0.25s})$$
$$\Rightarrow \tilde{C}_{1}^{P}(t) = 5(1 - e^{-t/2})$$
$$- 5(1 - e^{-(t-0.25)/2}) S(t - 0.25)$$

$$\tilde{C}_{1}^{\delta}(s) = \frac{1}{2s+1} \tilde{C}_{i}^{\delta}(s) = \frac{1.25}{(2s+1)}$$
$$\Rightarrow \quad \tilde{c}_{1}^{\delta} = 0.625e^{-t/2}$$

CHBE320 Process Dynamics and Control



$$\tilde{C}_{2}^{P}(s) = \frac{1}{(2s+1)(1.5s+1)}\tilde{C}_{i}^{P}(s) = \frac{5}{s(2s+1)(1.5s+1)}(1-e^{-0.25s})$$
$$= \left(\frac{5}{s} - \frac{40}{2s+1} + \frac{22.5}{1.5s+1}\right)(1-e^{-0.25s})$$

$$\tilde{c}_{2}^{P}(t) = (5 - 20e^{-t/2} + 15e^{-t/1.5}) - (5 - 20e^{-(t - 0.25)/2} + 15e^{-(t - 0.25)/1.5}) S(t - 0.25)$$

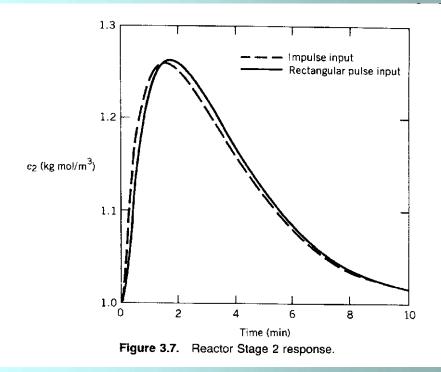
$$\tilde{C}_{2}^{\delta}(s) = \frac{1}{(2s+1)(1.5s+1)} \tilde{C}_{i}^{\delta}(s)$$

$$= \frac{1}{(2s+1)(1.5s+1)}$$

$$= \frac{5}{(2s+1)(1.5s+1)}$$

$$= \frac{5}{2s+1} - \frac{3.75}{1.5s+1}$$

$$\Rightarrow \tilde{C}_{2}^{\delta} = 2.5e^{-t/2} - 2.5e^{-t/1.5}$$



CHBE320 Process Dynamics and Control