CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION

Professor Dae Ryook Yang

Professor Dae Ryook Yang
Fall 2021
Dept. of Chemical and Biological Engineering
Korea University
CHBE320 Process Dynamics and Control Korea University 5-1 Fall 2021 Dept. of Chemical and Biological Engineering Korea University

Road Map of the Lecture V

• Laplace Transform and Transfer functions

- Definition of Laplace transform
- Properties of Laplace transform
- Inverse Laplace transform
- Definition of transfer function
- How to get the transfer functions
- Properties of transfer function

SOLUTION OF LINEAR ODE

• 1st-order linear ODE

- Integrating factor: For $\frac{ax}{dt} + a(t)$. dx (i) $f(x)$ in $f(x)$ **IF LINEAR ODE**
 $\frac{dx}{dt} + a(t)x = f(t)$, I.F. = exp($\int a(t)dt$)
 $\rightarrow x(t) = [\int f(t)e^{\int a(t)dt} dt + C]e^{-\int a(t)dt}$ **SOLUTION OF LINEAR ODE**

der linear ODE

egrating factor: For $\frac{dx}{dt} + a(t)x = f(t)$, I.F. = $\exp(\int a(t)dt)$
 $[xe^{\int a(t)dt}]' = f(t)e^{\int a(t)dt} \longrightarrow x(t) = [\int f(t)e^{\int a(t)dt} dt + C]e^{-\int a(t)dt}$

order linear ODE with constant coeffs.

$$
[xe^{\int a(t)dt}]' = f(t)e^{\int a(t)dt} \longrightarrow x(t) = [\int f(t)e^{\int a(t)dt} dt + C]e^{-\int a(t)dt}
$$

• High-order linear ODE with constant coeffs.

– Modes: roots of characteristic equation

 2^{χ} + u_1^{χ} + u_0^{χ} - $J(t)$, $'' + a_{1}x' + a_{2}x = f(t)$ 1^{χ} + u_0^{χ} - χ (*l*), $y' + a_2 y = f(t)$ 0^{χ} - \int (ι),

 $a_1p + a_1p + a_0 - a_2(p$ $a^2 + a_1 n + a_2 = a_2 (n - n)$ $a_1 p + a_0 - a_2 (p - p_1)(p - p_2) - 0$

- Depending on the roots, modes are
	- Distinct roots: (e^{-p_1t}, e^{-p_2t})) and $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
	- Double roots: (e^{-p_1t},te^{-p_1t})) and $\overline{}$
	- Imaginary roots: $(e^{-\alpha} \cos \beta t, e^{-\alpha} \sin \beta t)$

For $a_2x'' + a_1x' + a_0x = f(t)$,
 $a_2p^2 + a_1p + a_0 = a_2(p - p_1)(p - p_2) = 0$

- Depending on the roots, modes are

• Distinct roots: (e^{-p_1t},te^{-p_2t})

• Double roots: $(e^{-a} cos \beta t, e^{-\alpha} sin \beta t)$

• Many other techniques for different case • Many other techniques for different cases

ODE with constant coeffs.
 $f(t)$,
 $(p-1)(p-p_2) = 0$
 $f(t)$,
 $\frac{p_1t}{p_2t}e^{-p_2t}$
 $\frac{p_1t}{p_2t}e^{-p_1t}$
 $\frac{p_1t}{p_2t}e^{-p_1t}$
 $\frac{p_2t}{p_2t}e^{-p_2t}$
 $\frac{p_1t}{dt}e^{-p_1t}$
 $\frac{d}{dt}$
 $\frac{d}{dt}$ and the coefficients a Solution is a linear combination of modes and the coefficients are decided by the initial conditions.

LAPLACE TRANSFORM FOR LINEAR ODE AND PDE

• Laplace Transform

- Not in time domain, rather in frequency domain
- Derivatives and integral become some operators.
- ODE is converted into algebraic equation
- PDE is converted into ODE in spatial coordinate
- Need inverse transform to recover time-domain solution

DEFINITION OF LAPLACE TRANSFORM

• Definition

DEFINITION OF LAPLACE TRANSFORM
\n**Definition**
\n
$$
F(s) = \mathfrak{L}\{f(t)\} \triangleq \int_0^\infty f(t)e^{-st}dt
$$
\n
$$
- F(s) \text{ is called Laplace transform of } f(t).
$$
\n
$$
- f(t) \text{ must be piecewise continuous.}
$$
\n
$$
- F(s) \text{ contains no information on } f(t) \text{ for } t < 0.
$$
\n
$$
- \text{ The past information on } f(t) \text{ (for } t < 0) \text{ is irrelevant.}
$$
\n
$$
- \text{ The } s \text{ is a complex variable called "Laplace transform variable"}
$$

- $F(s)$ is called *Laplace transform* of $f(t)$.
-
-
-
-
- Inverse Laplace transform

- $F(s)$ contains no information on $f(t)$ for $t < 0$.

- The past information on $f(t)$ (for $t < 0$) is irrelevant.

- The s is a complex variable called "Laplace transform variable"

• Inverse Laplace transform
 $f(t) = \mathcal{L$ $-$ and 2^{-1} are linear. $\mathfrak{L}\{af_1(t) + bf_2(t)\} = aF_1(s) + bF_2(s)$

LAPLACE TRANSFORM OF FUNCTIONS LAPLACE TRANSFORM OF FUN

Constant function, a
 $g_{\{a\}} = \int_0^\infty ae^{-s} dt = -\frac{a}{s}e^{-st}\Big|_0^\infty = 0 - \left(-\frac{a}{s}\right) = \frac{a}{s}$

Step function, $S(A)$ APLACE TRANSFORM OF FUNCTI

onstant function, a
 $\begin{array}{c}\n\overline{\int_{0}^{\infty} a e^{-s} dt} = -\frac{a}{s} e^{-st} \Big|_{0}^{\infty} = 0 - \left(-\frac{a}{s}\right) = \frac{a}{s}\n\end{array}$

tep function, S(t)
 $f(t) = S(t) = \begin{bmatrix} 1 & \text{for } t \geq 0 \\ 0 & \text{for } t < 0 \end{bmatrix}$
 $\begin{array}{c}\n\overline{f(t$ **E TRANSFORM OF FUNCT!**
 \therefore
 \therefore inction, a
 $\left[\frac{f(t)}{a}\right]_0^{\frac{a}{a}} = 0 - \left(-\frac{a}{s}\right) = \frac{a}{s}$
 \therefore
 $\lim_{a \to \infty} S(t)$
 $\lim_{\text{for } t \geq 0} S(t)$
 $\lim_{\text{for } t \geq 0} S(t) = 0 - \left(-\frac{1}{s}\right) = \frac{1}{s}$

• Constant function, a

$$
\mathfrak{L}\{a\} = \int_0^\infty a e^{-s} \ dt = -\frac{a}{s} e^{-st} \Big|_0^\infty = 0 - \left(-\frac{a}{s}\right) = \frac{a}{s}
$$

• Step function, $S(t)$
 $\frac{f(t)}{f(t)}$ $\frac{f(t)}{f(t)}$ for $t > 0$

$$
f(t) = S(t) = \begin{cases} 0 & \text{for } t < 0 \end{cases}
$$

Constant function,

\n
$$
a
$$
\n
$$
g_{\{a\}} = \int_{0}^{\infty} ae^{-s} dt = -\frac{a}{s}e^{-st} \Big|_{0}^{\infty} = 0 - \Big(-\frac{a}{s}\Big) = \frac{a}{s}
$$
\n**Step function,** $S(t)$

\n
$$
f(t) = S(t) = \begin{cases} 1 & \text{for } t \ge 0 \\ 0 & \text{for } t < 0 \end{cases}
$$
\n
$$
g_{\{S(t)\}} = \int_{0}^{\infty} e^{-s} dt = -\frac{1}{s}e^{-st} \Big|_{0}^{\infty} = 0 - \Big(-\frac{1}{s}\Big) = \frac{1}{s}
$$
\n**Example 4:** The equation of the equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 5:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 6:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 7:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 8:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 9:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 10:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 11:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 12:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 13:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 14:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 15:** The equation is:

\n
$$
a = \frac{1}{s}e^{-st}
$$
\n**Example 16:** The equation is:

\n<math display="</p>

• Exponential function, $e^{\text{-}bt}$

$$
\mathfrak{L}\{e^{-bt}\} = \int_0^\infty e^{-bt} e^{-st} dt = \frac{-1}{s+b} e^{-(b+s)t} \Big|_0^\infty = \frac{1}{s+b}
$$

- Trigonometric functions
	- Euler's Identity: $e^{j\omega t} \triangleq \cos \omega t + j \sin \omega t$

JONOMetric functions

Cos $\omega t = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$ $\sin \omega t = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$
 $\cos \omega t = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$ $\sin \omega t = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$
 $\mathcal{E}\{\sin \omega t\} = \mathcal{E}\left\{\frac{1}{2i}e^{j\omega t}\right\} - \mathcal{E}\left\{\frac{1}{2i}e^{-j\omega$ 1 (i) i $-i$ i j j j j j j $2^{\binom{2}{2}}$ $e^{j\omega t} + e^{-j\omega t}$ $\sin \omega$ 1 (i) $\frac{1}{2}$ (i) $\frac{1}{2}$

21

\n22

\n
$$
\text{23}
$$
\n
$$
\text{24}
$$
\n
$$
\text{25}
$$
\n
$$
\text{26}
$$
\n
$$
\text{27}
$$
\n
$$
\text{28}
$$
\n
$$
\text{29}
$$
\n
$$
\text{20}
$$
\n
$$
\text{21}
$$
\n
$$
\text{22}
$$
\n
$$
\text{23}
$$
\n
$$
\text{24}
$$
\n
$$
\text{25}
$$
\n
$$
\text{26}
$$
\n
$$
\text{27}
$$
\n
$$
\text{28}
$$
\n
$$
\text{29}
$$
\n
$$
\text{20}
$$
\n
$$
\text{21}
$$
\n
$$
\text{22}
$$
\n
$$
\text{23}
$$
\n
$$
\text{24}
$$
\n
$$
\text{25}
$$
\n
$$
\text{26}
$$
\n
$$
\text{27}
$$
\n
$$
\text{28}
$$
\n
$$
\text{29}
$$
\n
$$
\text{20}
$$
\n
$$
\text{21}
$$
\n
$$
\text{22}
$$
\n
$$
\text{23}
$$
\n
$$
\text{24}
$$
\n
$$
\text{25}
$$
\n
$$
\text{26}
$$
\n
$$
\text{27}
$$
\n
$$
\text{28}
$$
\n
$$
\text{29}
$$
\n
$$
\text{20}
$$
\n
$$
\text{21}
$$
\n
$$
\text{22}
$$
\n
$$
\text{23}
$$
\n
$$
\text{24}
$$
\n
$$
\text{25}
$$
\n
$$
\text{26}
$$
\n
$$
\text{27}
$$
\n
$$
\text{28}
$$
\n
$$
\text{29}
$$
\n
$$
\text{20}
$$
\n
$$
\text{21}
$$
\n
$$
\text{22}
$$
\n
$$
\text{23}
$$
\n
$$
\text{24}
$$
\n
$$
\text{25}
$$
\n
$$
\text
$$

 sin ⁼ 1 2 ఠ௧ − 1 2 ିఠ௧ ⁼ 1 2 1 [−] [−] 1 ⁺ ⁼ ଶ + ଶ cos ⁼ 1 2 ఠ௧ + 1 2 ିఠ௧ = 1 2 1 [−] ⁺ 1 ⁺ ⁼ ଶ + ଶ

• Rectangular pulse, $P(t)$

• **Rectangular pulse, P**(*t*)
\n
$$
f(t) = P(t) = \begin{cases} 0 & \text{for } t > t_w \\ h & \text{for } t_w \ge t \ge 0 \\ 0 & \text{for } t < 0 \end{cases}
$$
\n
$$
\mathfrak{L}{P(t)} = \int_0^{t_w} he^{-st} dt = -\frac{h}{s}e^{-st}\Big|_0^{t_w} = \frac{h}{s}(1 - e^{-t_w s})
$$
\n
$$
\begin{array}{|l|l|}\n\hline\n t_w & t \\
\hline\n t_w & t\n\end{array}
$$
\n
$$
\begin{array}{|l|l|}\n\hline\n\end{array}
$$
\n
$$
\begin{array}{|l|}\n\hline\n\end{array}
$$
\n
$$
\begin{array}{|l|}\n\hline\n\end{array}
$$
\n
$$
\begin{array}{|l|}\
$$

$$
\mathfrak{L}\{\mathbf{P}(t)\} = \int_0^{t_w} h e^{-st} dt = -\frac{h}{s} e^{-st} \bigg|_0^{t_w} = \frac{h}{s} (1 - e^{-t_w s})
$$

• Impulse function, $\delta(t)$

$$
f(t) = \delta(t) = \lim_{t_w \to 0} \begin{cases} 0 & \text{for } t > t_w \\ 1/t_w & \text{for } t_w \ge t \ge 0 \\ 0 & \text{for } t < 0 \end{cases} \qquad \qquad \boxed{\begin{array}{l} f(t) \\ 1/t_w \\ 1/t_w \end{array}}
$$

$$
\mathfrak{L}\{\delta(t)\} = \lim_{t_w \to 0} \int_0^{t_w} \frac{1}{t_w} e^{-s} dt = \lim_{t_w \to 0} \frac{1}{t_w s} (1 - e^{-t_w s}) = 1
$$

$$
\left(\text{L'Hospital's rule: } \lim_{t \to 0} \frac{f(t)}{g(t)} = \lim_{t \to 0} \frac{f'(t)}{g'(t)} \right)
$$

• Ramp function, t

PROPERTIES OF LAPLACE TRANSFORM

• Differentiation

 \vdots

PROPERTIES OF LAPLACE TRANSFORM
\nDifferentiation
\n
$$
\mathcal{E}\left\{\frac{df}{dt}\right\} = \int_0^\infty f' \cdot e^{-st} dt = f(t)e^{-s}\Big|_0^\infty - \int_0^\infty f \cdot (-s)e^{-st} dt \qquad (by i.b.p.)
$$
\n
$$
= s\int_0^\infty f \cdot e^{-st} dt - f(0) = sF(s) - f(0)
$$
\n
$$
\mathcal{E}\left\{\frac{d^2f}{dt^2}\right\} = \int_0^\infty f'' \cdot e^{-s} dt = f(t)'e^{-s}\Big|_0^\infty - \int_0^\infty f' \cdot (-s)e^{-s} dt = s\int_0^\infty f' \cdot e^{-s} dt - f'(0)
$$
\n
$$
= s(sF(s) - f(0)) - f'(0) = s^2F(s) - sf(0) - f'(0)
$$
\n
$$
\vdots
$$

PROPERITIES OF LAPLACE TRANSFORM
\nDifferentiation
\n
$$
\mathfrak{L}\left\{\frac{df}{dt}\right\} = \int_0^\infty f' \cdot e^{-st} dt = f(t)e^{-s}\Big|_0^\infty - \int_0^\infty f \cdot (-s)e^{-st} dt \qquad \text{(by } i.b.p.)
$$
\n
$$
= s \int_0^\infty f \cdot e^{-st} dt - f(0) = sF(s) - f(0)
$$
\n
$$
\mathfrak{L}\left\{\frac{d^2f}{dt^2}\right\} = \int_0^\infty f'' \cdot e^{-s} dt = f(t)'e^{-s}\Big|_0^\infty - \int_0^\infty f' \cdot (-s)e^{-s} dt = s \int_0^\infty f' \cdot e^{-s} dt - f'(0)
$$
\n
$$
= s(sF(s) - f(0)) - f'(0) = s^2F(s) - sf(0) - f'(0)
$$
\n
$$
\vdots
$$
\n
$$
\mathfrak{L}\left\{\frac{d^n f}{dt^n}\right\} = \int_0^\infty f^{(n)} \cdot e^{-st} dt = f(t)^{(n-1)}e^{-st}\Big|_0^\infty - \int_0^\infty f^{(n-1)} \cdot (-s)e^{-st} dt
$$
\n
$$
= s \int_0^\infty f^{(n-1)} \cdot e^{-s} dt - f^{(n-1)}(0) = s \left(\mathfrak{L}\left\{\frac{d^{n-1}f}{dt^{n-1}}\right\} \right) - f^{(n-1)}(0)
$$
\n
$$
= s^nF(s) - s^{n-1}f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)
$$

$$
\mathfrak{L}\left\{\frac{d^{2}f}{dt^{2}}\right\} = \int_{0}^{\infty} f'' \cdot e^{-s} \, dt = f(t)^{\prime} e^{-s} \Big|_{0}^{\infty} - \int_{0}^{\infty} f' \cdot (-s) e^{-s} \, dt = s \int_{0}^{\infty} f' \cdot e^{-s} \, dt - f'(0)
$$
\n
$$
= s(sF(s) - f(0)) - f'(0) = s^{2}F(s) - sf(0) - f'(0)
$$
\n
$$
\vdots
$$
\n
$$
\mathfrak{L}\left\{\frac{d^{n}f}{dt^{n}}\right\} = \int_{0}^{\infty} f^{(n)} \cdot e^{-st} \, dt = f(t)^{(n-1)} e^{-st} \Big|_{0}^{\infty} - \int_{0}^{\infty} f^{(n-1)} \cdot (-s) e^{-st} \, dt
$$
\n
$$
= s \int_{0}^{\infty} f^{(n-1)} \cdot e^{-s} \, dt - f^{(n-1)}(0) = s \left(\mathfrak{L}\left\{\frac{d^{n-1}f}{dt^{n-1}}\right\} \right) - f^{(n-1)}(0)
$$
\n
$$
= s^{n}F(s) - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)
$$
\nKorea University 5-11

- If $f(0) = f'(0) = f''(0) = ... = f^{(n-1)}(0) = 0$,
	- Initial condition effects are vanished.
- It is very convenient to use deviation $V(0) = f' (0) = f'' (0) = ... = f^{(n-1)} (0) = 0,$
Initial condition effects are vanished.
It is very convenient to use deviation
variables so that all the effects of
initial condition vanish. initial condition vanish. al condition effects are vanished.

very convenient to use deviation

ables so that all the effects of

al condition vanish.
 forms of linear differential equa
 $Y(s)$, $u(t) \stackrel{g}{\longrightarrow} U(s)$
 $\rightarrow sY(s)$ (if $y(0) = 0$) ery convenient to use deviation
bles so that all the effects of
l condition vanish.

Condition vanish.
Condition vanish.
Condition vanish.
Condition vanish.
Condition vanish.
Conditions.

Conditions.
 $\Omega\left\{\$

$$
\mathfrak{L}\left\{\frac{df}{dt}\right\} = sF(s)
$$

$$
\mathfrak{L}\left\{\frac{d^2f}{dt^2}\right\} = s^2F(s)
$$

$$
\mathfrak{L}\left\{\frac{d^n f}{dt^n}\right\} = s^nF(s)
$$

• Transforms of linear differential equations.

$$
y(t) \xrightarrow{\Omega} Y(s), \qquad u(t) \xrightarrow{\Omega} U(s)
$$

\n
$$
\frac{dy(t)}{dt} \xrightarrow{\Omega} sY(s) \quad (\text{if } y(0) = 0)
$$

$$
\tau \frac{dy(t)}{dt} = -y(t) + Ku(t) \ (y(0) = 0) \xrightarrow{\mathfrak{L}} (\tau s + 1) Y(s) = KU(s)
$$

initial condition vanish.
$$
(dt^n)
$$

\n• **Transforms of linear differential equations.**
\n
$$
y(t) \xrightarrow{g} Y(s), \qquad u(t) \xrightarrow{g} U(s)
$$
\n
$$
\frac{dy(t)}{dt} \xrightarrow{g} sY(s) \quad \text{(if } y(0) = 0)
$$
\n
$$
\tau \frac{dy(t)}{dt} = -y(t) + Ku(t) \quad (y(0) = 0) \xrightarrow{g} \tau(s+1)Y(s) = KU(s)
$$
\n
$$
\frac{\partial T_L}{\partial t} = -v \frac{\partial T_L}{\partial z} + \frac{1}{\tau_{HL}} (T_w - T_L) \xrightarrow{g} \tau_{HL} v \frac{\partial T_L}{\partial z} + (\tau_{HL} s + 1) \tilde{T}_L(s) = \tilde{T}_w(s)
$$
\n**CHBE320 Process Dynamics and Control Korea University** 5-12

• Integration

integration
\n
$$
\mathcal{L}\left\{\int_{0}^{t} f(\xi) d\xi\right\} = \int_{0}^{\infty} \left(\int_{0}^{t} f(\xi) d\xi\right) e^{-s} dt
$$
\n
$$
= \frac{e^{-s}}{-s} \int_{0}^{t} f(\xi) d\xi \Big|_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t} \int_{0}^{t} f \cdot e^{-st} dt = \frac{F(s)}{s} \qquad \text{(by } i. b. p.)
$$
\n
$$
\left(\text{Leibniz rule: } \frac{d}{dt} \int_{a(t)}^{b(t)} f(\tau) d\tau = f(b(t)) \frac{db(t)}{dt} - f(a(t)) \frac{da(t)}{dt}\right)
$$
\n**Time delay (Translation in time)**
\n
$$
f(t) \xrightarrow{+\theta \text{ int}} f(t-\theta) S(t-\theta)
$$
\n
$$
\mathcal{L}\{f(t-\theta) S(t-\theta)\} = \int_{\theta}^{\infty} f(t-\theta) e^{-s} dt = \int_{0}^{\infty} f(\tau) e^{-s(\tau+\theta)} d\tau \quad (\text{let } \tau = t - \theta)
$$
\n
$$
= e^{-\theta s} \int_{0}^{\infty} f(\tau) e^{-\tau s} d\tau = e^{-\theta s} F(s)
$$

• Time delay (Translation in time)

$$
f(t) \xrightarrow{+\theta \text{ int}} f(t-\theta) S(t-\theta)
$$

$$
f(t) \xrightarrow{+\theta \text{ int}} f(t-\theta) S(t-\theta)
$$
\n
$$
\mathfrak{L}\{f(t-\theta) S(t-\theta)\} = \int_{\theta}^{\infty} f(t-\theta) e^{-s} dt = \int_{0}^{\infty} f(\tau) e^{-s(\tau+\theta)} d\tau \quad (\text{let } \tau = t-\theta)
$$
\n
$$
= e^{-\theta s} \int_{0}^{\infty} f(\tau) e^{-rs} d\tau = e^{-\theta s} F(s)
$$
\n• **Derivative of Laplace transform**\n
$$
\frac{dF(s)}{ds} = \frac{d}{ds} \int_{0}^{\infty} f \cdot e^{-st} dt = \int_{0}^{\infty} f \cdot \frac{d}{ds} e^{-s} dt = \int_{0}^{\infty} (-t \cdot f) e^{-st} dt = \mathfrak{L}[-t \cdot f(t)]
$$
\nCHBE320 Process Dynamics and Control

\nKorea University 5-13

• Derivative of Laplace transform $dF(s)$ d \int^{∞} $d \int_{c}^{\infty}$ e^{ct} is $\int_{c}^{\infty} d$ ∞ and \int_0^∞ d \int_0^∞ ∞ d \sim ∞

$$
\frac{dF(s)}{ds} = \frac{d}{ds} \int_0^\infty f \cdot e^{-st} dt = \int_0^\infty f \cdot \frac{d}{ds} e^{-s} dt = \int_0^\infty (-t \cdot f) e^{-st} dt = \mathfrak{L}[-t \cdot f(t)]
$$

- Final value theorem
	- $-$ From the LT of differentiation, as s approaches to zero ∞ d f $\int_0^{\infty} dt$ $s\rightarrow 0$ $s\rightarrow 0$ $s\rightarrow 0$ $s\rightarrow 0$ J_0 dt J_0 $s_{\text{d}t} = \frac{w_t}{w} \cdot \lim_{\epsilon \to 0} \epsilon$ ∞ df $\int_0^\infty df$ 0 dt J_0 dt $s\rightarrow 0$ $s\rightarrow 0$ \rightarrow $^{-s}$ dt = $\lim_{s \to s} [sF(s)]$ - ∞ df 0 dt $s\rightarrow 0$ $s\rightarrow 0$
	- Limitation: $f(\infty)$ has to exist. If it diverges or oscillates, this theorem is not valid.

• Initial value theorem

 $-$ From the LT of differentiation, as s approaches to infinity

• **Initial value theorem**
\n– From the LT of differentiation, as s approaches to infinity
\n
$$
\lim_{s \to \infty} \int_0^{\infty} \frac{df}{dt} \cdot e^{-st} dt = \lim_{s \to \infty} [sF(s) - f(0)]
$$
\n
$$
\lim_{s \to \infty} \int_0^{\infty} \frac{df}{dt} e^{-s} dt = 0 = \lim_{s \to \infty} sF(s) - f(0) \Rightarrow f(0) = \lim_{s \to \infty} sF(s)
$$
\nCHEB320 Process Dynamics and Control
\nKorea University 5-14

EXAMPLE ON LAPLACE TRANSFORM (1)

$$
f(t) = 1.5t S(t) - 1.5(t - 2) S(t - 2) - 3 S(t - 6)
$$

:. $F(s) = \mathfrak{L}{f(t)} = \frac{1.5}{s^2} (1 - e^{-2s}) - \frac{3}{s} e^{-6s}$

• For
$$
F(s) = \frac{2}{s-5}
$$
, find $f(0)$ and $f(\infty)$.

– Using the initial and final value theorems

$$
f(0) = \lim_{s \to \infty} s F(s) = \lim_{s \to \infty} \frac{2s}{s - 5} = 2 \qquad f(\infty) = \lim_{s \to 0} s F(s) = \lim_{s \to 0} \frac{2s}{s - 5} = 0
$$

 \therefore $F(s) = x(f(t)) = \frac{2}{s^2}(1 - e^{-2t}) - \frac{1}{s}e^{-3t}$

• For $F(s) = \frac{2}{s-5}$, find $f(0)$ and $f(\infty)$.

– Using the initial and final value theorems
 $f(0) = \lim_{s \to \infty} s F(s) = \lim_{s \to \infty} \frac{2s}{s-5} = 2$ $f(\infty) = \lim_{s \to 0} s F(s) = \lim_{s \to 0} \frac$ – But the final value theorem is not valid because $t\rightarrow\infty$ $t\rightarrow\infty$ $5t$

EXAMPLE ON LAPLACE TRANSFORM (2)

• What is the final value of the following system?

$$
x'' + x' + x = \sin t \; ; \; x(0) = x'(0) = 0
$$
\n
$$
\Rightarrow s^2 X(s) + sX(s) + X = \frac{1}{s^2 + 1} \Rightarrow x(s) = \frac{1}{(s^2 + 1)(s^2 + s + 1)}
$$
\n
$$
x(\infty) = \lim_{s \to 0} \frac{s}{(s^2 + 1)(s^2 + s + 1)} = 0
$$

- $-$ Actually, $x(\infty)$ cannot be defined due to sin t term.
- Find the Laplace transform for $(t \sin \omega t)$?

- Actually,
$$
x(\infty)
$$
 cannot be defined due to sin *t* term.
\n• Find the Laplace transform for $(t \sin \omega t)$?
\nFrom $\frac{dF(s)}{ds} = \mathfrak{L}[-t \cdot f(t)]$
\n $\mathfrak{L}[t \cdot \sin \omega t] = -\frac{d}{ds} \left[\frac{\omega}{s^2 + \omega^2} \right] = \frac{2\omega s}{(s^2 + \omega^2)^2}$
\nCHBE320 Process Dynamics and Control
\nKorea University 5-16

INVERSE LAPLACE TRANSFORM

• Used to recover the solution in time domain

$$
\Omega^{-1}{F(s)}=f(t)
$$

- From the table
- By partial fraction expansion
- By inversion using contour integral

$$
f(t) = \mathfrak{L}^{-1}{F(s)} = \frac{1}{2\pi j}\oint_C e^{st}F(s)ds
$$

- Partial fraction expansion
- By Inversion using contour Integral
 $f(t) = \mathfrak{L}^{-1}{F(s)} = \frac{1}{2\pi j}\oint_{c} e^{st}F(s)ds$

 Partial fraction expansion

 After the partial fraction expansion, it requires to know some

simple formula of inverse Laplace transf – After the partial fraction expansion, it requires to know some simple formula of inverse Laplace transform such as

$$
\frac{1}{(\tau s + 1)}, \frac{s}{(s + b)^2 + \omega^2}, \frac{(n - 1)!}{s^n}, \frac{e^{-\theta s}}{\tau^2 s^2 + 2\zeta \tau s + 1}, \text{ etc.}
$$

PARTIAL FRACTION EXPANSION

$$
F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s+p_1)\cdots(s+p_n)} = \frac{\alpha_1}{(s+p_1)} + \cdots + \frac{\alpha_n}{(s+p_n)}
$$

- Case I: All p_i 's are distinct and real
	- By a root-finding technique, find all roots (time-consuming)
	- Find the coefficients for each fraction
		- Comparison of the coefficients after multiplying the denominator
		- Replace some values for s and solve linear algebraic equation
		- Use of Heaviside expansion
			- Multiply both side by a factor, $(s+p_i)$, and replace s with $-p_i$. .

\n- Comparison of the coefficients after multiplying the denominator
\n- Replace some values for *s* and solve linear algebraic equation
\n- Use of Heaviside expansion\n
	\n- Multiply both side by a factor,
	$$
	(s+p_i)
	$$
	, and replace *s* with $-p_i$.
	\n- $\alpha_i = (s+p_i) \frac{N(s)}{D(s)}\Big|_{s=-p_i}$
	\n\n
\n- Inverse LT:\n
$$
f(t) = \alpha_1 e^{-p_1 t} + \alpha_2 e^{-p_2 t} + \dots + \alpha_n e^{-p_n t}
$$
\n
\n- CHBE320 Process Dynamics and Control\n
	\n- Korea University 5-18
	\n\n
\n

– Inverse LT:

$$
f(t) = \alpha_1 e^{-p_1 t} + \alpha_2 e^{-p_2 t} + \dots + \alpha_n e^{-p_n t}
$$

• Case II: Some roots are repeated

$$
F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s+p)^r} = \frac{b_{r-1}s^{r-1} + \dots + b_0}{(s+p)^r} = \frac{\alpha_1}{(s+p)} + \dots + \frac{\alpha_r}{(s+p)^r}
$$

- Each repeated factors have to be separated first.
- Same methods as Case I can be applied.
- Heaviside expansion for repeated factors

$$
\alpha_{r-i} = \frac{1}{i!} \frac{d^{(i)}}{ds^{(i)}} \left(\frac{N(s)}{D(s)} (s+p)^r \right) \Big|_{s=-p} \quad (i = 0, \dots, r-1)
$$

- Inverse LT

$$
f(t) = \alpha_1 e^{-pt} + \alpha_2 t e^{-p} + \dots + \frac{\alpha_r}{(r-1)!} t^{r-1} e^{-pt}
$$

CHBE320 Process Dynamics and Control
Korea University 5-19

– Inverse LT

$$
f(t) = \alpha_1 e^{-pt} + \alpha_2 t e^{-p} + \dots + \frac{\alpha_r}{(r-1)!} t^{r-1} e^{-pt}
$$

• Case III: Some roots are complex

$$
F(s) = \frac{N(s)}{D(s)} = \frac{c_1s + c_0}{s^2 + d_1s + d_0} = \frac{\alpha_1(s+b) + \beta_1\omega}{(s+b)^2 + \omega^2}
$$

– Each repeated factors have to be separated first. – Then,

$$
\frac{\alpha_1(s+b) + \beta_1 \omega}{(s+b)^2 + \omega^2} = \alpha_1 \frac{(s+b)}{(s+b)^2 + \omega^2} + \beta_1 \frac{\omega}{(s+b)^2 + \omega^2}
$$

\nwhere $b = d_1/2$, $\omega = \sqrt{d_0 - d_1^2/4}$
\n $\alpha_1 = c_1$, $\beta_1 = (c_0 - \alpha_1 b)/\omega$
\n- **Inverse LT**
\n $f(t) = \alpha_1 e^{-bt} \cos \omega t + \beta_1 e^{-bt} \sin \omega t$
\n**CHBE320 Process Dynamics and Control**
\n**Korea University** 5-20

– Inverse LT

$$
f(t) = \alpha_1 e^{-bt} \cos \omega t + \beta_1 e^{-bt} \sin \omega t
$$

EXAMPLES ON INVERSE LAPLACE TRANSFORM

• $F(s) = \frac{1}{s(s)}$

– Multiply each factor and insert the zero value

EXAMPLES ON INVERSE LAPLACE
\n**TRANSFORM**
\n•
$$
F(s) = \frac{(s+5)}{s(s+1)(s+2)(s+3)} = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+2} + \frac{D}{s+3}
$$
 (distinct)
\n– Multiply each factor and insert the zero value
\n
$$
\frac{(s+5)}{(s+1)(s+2)(s+3)}\Big|_{s=0} = (A + s\frac{B}{s+1} + s\frac{C}{s+2} + s\frac{D}{s+3})\Big|_{s=0} \Rightarrow A = 5/6
$$
\n
$$
\frac{(s+5)}{s(s+2)(s+3)}\Big|_{s=-1} = (\frac{A(s+1)}{s} + B + \frac{C(s+1)}{s+2} + \frac{D(s+1)}{s+3})\Big|_{s=-1} \Rightarrow B = -2
$$
\n
$$
\frac{(s+5)}{s(s+1)(s+3)}\Big|_{s=-2} = (\frac{A(s+2)}{s} + \frac{B(s+2)}{s+1} + C + \frac{D(s+2)}{s+3})\Big|_{s=-2} \Rightarrow C = 3/2
$$
\n
$$
\frac{(s+5)}{s(s+1)(s+2)}\Big|_{s=-3} = (\frac{A(s+3)}{s} + \frac{B(s+3)}{s+1} + \frac{C(s+3)}{s+2} + D)\Big|_{s=-3} \Rightarrow D = -1/3
$$
\n
$$
\therefore f(t) = 2^{-1}{F(s)} = \frac{5}{6} - 2e^{-t} + \frac{3}{2}e^{-2t} - \frac{1}{3}e^{-3t}
$$
\nKorea University 5-21

$$
\therefore f(t) = \mathfrak{L}^{-1}{F(s)} = \frac{5}{6} - 2e^{-t} + \frac{3}{2}e^{-2t} - \frac{1}{3}e^{-3t}
$$

$$
F(s) = \frac{1}{(s+1)^3(s+2)} = \frac{As^2 + Bs + C}{(s+1)^3} + \frac{D}{(s+2)}
$$
 (repeated)
\n
$$
1 = (As^2 + Bs + C)(s+2) + D(s+1)^3
$$
\n
$$
= (A + D)s^3 + (2A + B + 3D)s^2 + (2B + C + 3D)s + (2C + D)
$$
\n
$$
\therefore A = -D, \quad 2A + B + 3D = 0, \quad 2B + C + 3D = 0, \quad 2C + D = 1
$$
\n
$$
\Rightarrow A = 1, \quad B = 1, \quad C = 1, \quad D = -1
$$
\n
$$
\Rightarrow \text{A = 1, } \quad B = 1, \quad C = 1, \quad D = -1
$$
\n
$$
\text{Use of Heaviside expansion } \alpha_{r-i} = \frac{1}{t!} \frac{d^{(i)}}{ds^{(i)}} \left(\frac{N(s)}{D(s)}(s+p)^r\right)\Big|_{s=-p} \quad (i = 0, \dots, r-1)
$$
\n
$$
\frac{s^2 + s + 1}{(s+1)^3} = \frac{\alpha_1}{(s+1)} + \frac{\alpha_2}{(s+1)^2} + \frac{\alpha_3}{(s+1)^3}
$$
\n
$$
(i = 0); \quad \alpha_3 = (s^2 + s + 1)|_{s=-1} = 1
$$
\n
$$
(i = 1); \quad \alpha_2 = \frac{1}{1!} \frac{d}{ds} (s^2 + s + 1) \Big|_{s=-1} = -1
$$
\n
$$
(i = 2); \quad \alpha_1 = \frac{1}{2!} \frac{d^2}{ds^2} (s^2 + s + 1) \Big|_{s=-1} = 1
$$
\n
$$
\therefore f(t) = 2^{-1} \{F(s)\} = e^{-t} - te^{-t} + \frac{1}{2} t^2 e^{-t} - e^{-2t}
$$
\nKorea University 5-22

•
$$
F(s) = \frac{(s+1)}{s^2(s^2+4s+5)} = \frac{A(s+2)+B}{(s+2)^2+1} + \frac{Cs+D}{s^2}
$$
 (complex)

$$
s + 1 = A(s + 2)s2 + Bs2 + (Cs + D)(s2 + 4s + 5)
$$

= (A + C)s³ + (2A + B + 4C + D)s² + (5C + 4D)s + 5D

 $\therefore A = -C$, $2A + B + 4C + D = 0$, $5C + 4D = 1$, $5D = 1$ \Rightarrow A = -1/25, B = -7/25, C = 1/25, D = 1/5 $rac{A(s + 2) + B}{(s + 2)^2 + 1} = -\frac{1}{25} \frac{(s + 2)}{(s + 2)^2 + 1} - \frac{7}{25} \frac{B}{(s + 2)^2 + 1}$ CHBE320 Process Dynamics and Control Korea University 5-23

CHBE320 Process Dynamics and Control Korea University 5-23 $\frac{Cs + D}{s^2} = \frac{1}{25} \frac{1}{s} + \frac{1}{5} \frac{1}{s^2}$

$$
\therefore f(t) = \mathfrak{L}^{-1}{F(s)} = -\frac{1}{25}e^{-2t}\cos t - \frac{7}{25}e^{-2}\sin t + \frac{1}{25} + \frac{1}{5}t
$$

•
$$
F(s) = \frac{1 + e^{-2s}}{(4s + 1)(3s + 1)} = \left(\frac{A}{4s + 1} + \frac{B}{3s + 1}\right)(1 + e^{-2s})
$$
 (Time delay)

$$
A = 1/(3s + 1)\Big|_{s=-1/4} = 4, \qquad B = 1/(4s + 1)\Big|_{s=-1/3} = -3
$$

$$
\therefore f(t) = \mathcal{L}^{-1}{F(s)} = \mathcal{L}^{-1}\left\{\frac{4}{4s+1} - \frac{3}{3s+1}\right\} + \mathcal{L}^{-1}\left\{\frac{4e^{-2s}}{4s+1} - \frac{3e^{-2s}}{3s+1}\right\}
$$

$$
= e^{-t/4} - e^{-t/3} + \left(e^{-(t-2)/4} - e^{-(t-2)/3}\right)S(t-2)
$$

SOLVING ODE BY LAPLACE TRANSFORM (DE BY LAPLACE TRAN

Procedure

1. Given linear ODE with initial condition,

2. Take Laplace transform and solve for output

3. Inverse Laplace transform (DLVING ODE BY LAPLACE TRANSFOR Procedure

1. Given linear ODE with initial condition,

2. Take Laplace transform and solve for output

3. Inverse Laplace transform **COUNTA ODE BY LAPLACE TRANSFORM**
 Procedure

1. Given linear ODE with initial condition,

2. Take Laplace transform and solve for output

3. Inverse Laplace transform
 Example: Solve for $5\frac{dy}{dx} + 4y = 2$: $y(0) = 1$

• Procedure

-
-
-

• **Example:** Solve for
$$
5\frac{dy}{dt} + 4y = 2
$$
; $y(0) = 1$

$$
\mathcal{L}(\mathbf{A} \mathbf{H}) = \mathcal{L}(\mathbf{A} \mathbf{B})
$$

\n
$$
\mathcal{L}\left\{5\frac{dy}{dt}\right\} + \mathcal{L}\{4y\} = \mathcal{L}\{2\} \implies 5(sY(s) - y(0)) + 4Y(s) = \frac{2}{s}
$$

\n
$$
(5s + 4)Y(s) = \frac{2}{s} + 5 \implies Y(s) = \frac{5s + 2}{s(5s + 4)}
$$

\n
$$
\therefore y(t) = \mathcal{L}^{-1}\{Y(s)\} = \mathcal{L}^{-1}\left\{\frac{0.5}{s} + \frac{2.5}{5s + 4}\right\} = 0.5 + 0.5e^{-0.8t}
$$

\n**CHBE320 Process Dynamics and Control**
\n**Korea University** 5-25

$$
(5s + 4)Y(s) = \frac{2}{s} + 5 \Rightarrow Y(s) = \frac{5s + 2}{s(5s + 4)}
$$

$$
\therefore y(t) = \mathfrak{L}^{-1}{Y(s)} = \mathfrak{L}^{-1}\left\{\frac{0.5}{s} + \frac{2.5}{5s + 4}\right\} = 0.5 + 0.5e^{-0.8t}
$$

TRANSFER FUNCTION (1)

• Definition

– An algebraic expression for the dynamic relation between the **input and output of the process model**

Finition
 $\frac{1}{5}$ and algebraic expression for the dynamic relation bether
 $\frac{dy}{dt}$ + 4y = u; y(0) = 1

• How to find transfer function

-
-
-
-
- (5s + 4) $\tilde{Y}(s) = \tilde{U}(s) \Rightarrow \frac{V(s)}{\tilde{U}(s)} = \frac{1}{5s+4} = \frac{0.23}{1.25s+1} \times G(s)$

 How to find transfer function

1. Find the equilibrium point

2. If the system is nonlinear, then linearize around equil, point

3. Introdu variables from deviation variables

TRANSFER FUNCTION (2)

• Benefits

– Once TF is known, the output response to various given inputs can be obtained easily.

$$
y(t) = \mathfrak{L}^{-1}{Y(s)} = \mathfrak{L}^{-1}{G(s)U(s)} \neq \mathfrak{L}^{-1}{G(s)}\mathfrak{L}^{-1}{U(s)}
$$

- Interconnected system can be analyzed easily.
	- By block diagram algebra

- Easy to analyze the qualitative behavior of a process, such as stability, speed of response, oscillation, etc.
	- By inspecting "Poles" and "Zeros"
	- Poles: all s's satisfying $D(s)=0$
	- Zeros: all s's satisfying $N(s)=0$

TRANSFER FUNCTION (3)

• Steady-state Gain: The ratio between ultimate changes in input and output

$$
Gain = K = \frac{\Delta \text{output}}{\Delta \text{input}} = \frac{(y(\infty) - y(0))}{(u(\infty) - u(0))}
$$

- For a unit step change in input, the gain is the change in output
- Gain may not be definable: for example, integrating processes and processes with sustaining oscillation in output
- From the final value theorem, unit step change in input with zero initial condition gives

$$
K = \frac{y(\infty)}{1} = \lim_{s \to 0} s Y(s) = \lim_{s \to 0} s G(s) \frac{1}{s} = \lim_{s \to 0} G(s)
$$

- Gain may not be definable: for example, integrating processes
and processes with sustaining oscillation in output
- From the final value theorem, unit step change in input with
zero initial condition gives
 $K = \frac{y(\infty)}{1$ – The transfer function itself is an impulse response of the system $Y(s) = G(s)U(s) = G(s) \mathfrak{L}{\delta(t)} = G(s)$

EXAMPLE

• Horizontal cylindrical storage tank (Ex4.7)

EXAMPLE
\n• **Horizontal cylindrical storage tank (Ex4.7)**
\n
$$
\frac{dm}{dt} = \rho \frac{dV}{dt} = \rho q_i - \rho q
$$
\n
$$
V(h) = \int_0^h Lw_i(\tilde{h})d\tilde{h} \Rightarrow \frac{dV}{dt} = Lw_i(h) \frac{dh}{dt}
$$
\n
$$
w_i(h)/2 = \sqrt{R^2 - (R-h)^2} = \sqrt{(2R-h)h}
$$
\n
$$
w_i L \frac{dh}{dt} = q_i - q \Rightarrow \frac{dh}{dt} = \frac{1}{2L\sqrt{(D-h)h}}(q_i - q) \text{ (Nonlinear ODE)}
$$
\n
$$
- \text{ Equilibrium point: } (\tilde{q}_i, \tilde{q}_i, \tilde{h}) \qquad 0 = (\tilde{q}_i - \tilde{q})/(2L\sqrt{(D-h)\tilde{h})}
$$
\n(if $\tilde{q}_i = \tilde{q}$, \tilde{h} can be any value in $0 \le \tilde{h} \le D$.)
\n- Linearization:
\n
$$
\frac{dh}{dt} = f(h, q_i, q) = \frac{\partial f}{\partial h}\Big|_{(\tilde{h}, q_i, q)} (h - \tilde{h}) + \frac{\partial f}{\partial q_i}\Big|_{(\tilde{h}, q_i, q)} (q_i - \tilde{q}_i) + \frac{\partial f}{\partial q_i}\Big|_{(\tilde{h}, q_i, q)} (q - \tilde{q})
$$
\n**CHBE320 Process Dynamics and Control**

$$
\frac{dh}{dt} = f(h, q_i, q) = \frac{\partial f}{\partial h}\bigg|_{(\bar{h}, \bar{q}_i, \bar{q})} (h - \bar{h}) + \frac{\partial f}{\partial q_i}\bigg|_{(\bar{h}, \bar{q}_i, \bar{q})} (q_i - \bar{q}_i) + \frac{\partial f}{\partial q}\bigg|_{(\bar{h}, \bar{q}_i, \bar{q})} (q - \bar{q})
$$

$$
\frac{\partial f}{\partial h}\Big|_{(\bar{h}, \bar{q}_i, \bar{q})} = (\bar{q}_i - \bar{q}) \frac{\partial}{\partial h} \frac{-1}{2L\sqrt{(D - h)h}} = 0 \quad (\because \bar{q}_i = \bar{q})
$$
\nLet this term be k \n
$$
\frac{\partial f}{\partial q}\Big|_{(\bar{h}, \bar{q}_i, \bar{q})} = \frac{-1}{2L\sqrt{(D - h)h}}, \qquad \frac{\partial f}{\partial q_i}\Big|_{(\bar{h}, \bar{q}_i, \bar{q})} = \frac{1}{2L\sqrt{(D - h)h}}
$$
\n
$$
\sum \widetilde{H}(s) = k\widetilde{Q}_i(s) - k\widetilde{Q}(s)
$$
\n
$$
\text{Transfer function between } \widetilde{H}(s) \text{ and } \widetilde{Q}(s): -\frac{k}{s} \qquad \text{(integrating)}
$$
\n
$$
\text{Transfer function between } \widetilde{H}(s) \text{ and } \widetilde{Q}_i(s): \frac{k}{s} \qquad \text{(integrating)}
$$

- If \bar{h} is near 0 or D , k becomes very large and \bar{h} is around $D/2$, k becomes minimum.
 \Rightarrow The model could be quite different depending on the operating condition used for the linearization.
 \Rightarrow The b • If \bar{h} is near 0 or D, k becomes very large and \bar{h} is around $D/2$, k becomes minimum.
	- \Rightarrow The model could be quite different depending on the operating condition used for the linearization.
	- \Rightarrow The best suitable range for the linearization in this case is around $D/2$. (less change in gain)

 \Rightarrow Linearized model would be valid in very narrow range near 0.

PROPERTIES OF TRANSFER FUNCTION

• Additive property

 $Y(s) = Y_1(s) + Y_2(s)$ $= G_1(s)X_1(s) + G_2(s)X_2(s)$

• Multiplicative property

 $X_3(s) = G_2(s)X_2(s)$ $= G_2(s) [G_1(s)X_1(s)]$

• Physical realizability

- $X_3(s) = G_2(s)X_2(s)$
 $= G_2(s)[G_1(s)X_1(s)]$

 Physical realizability

 In a transfer function, the order of numerator(m) is greater

than that of denominator(n): called "physically unrealizable"

 The order of derivative – In a transfer function, the order of numerator(m) is greater than that of denominator(n): called "physically unrealizable"
	- The order of derivative for the input is higher than that of output. (requires future input values for current output)

EXAMPLES ON TWO TANK SYSTEM

- Two tanks in series (Ex3.7) C_i
	- No reaction

$$
V_1 \frac{dc_1}{dt} + qc_1 = qc_i
$$

$$
V_2 \frac{dc_2}{dt} + qc_2 = qc_1
$$

Figure 3.4. Two-stage stirred-tank reactor system.

- Initial condition: $c_1(0)=c_2(0)=1$ kg mol/m³ (Use deviation var.)
- Parameters: $V_1/q=2$ min., $V_2/q=1.5$ min.
- Transfer functions

7.
$$
I = \frac{1}{100}
$$
 (10) – $C_2(0) - 1$ kg inol/111^o (Use deviation Var .)

\n7. T **2. Var 3. Var 4. Var 5. Var 6. Var 7. Var 7. Var 8. Var 9. Var 1. Var 1. <math display="**

• Pulse input

$$
\tilde{C}_i^P(s) = \frac{5}{s} (1 - e^{-0.25s})
$$

• Equivalent impulse input

 $i(\lambda) - \lambda$ $\delta(s) - \Omega(s) \times 0.25\delta(t)$

• Pulse response vs. Impulse response

$$
\tilde{C}_1^P(s) = \frac{1}{2s+1} \tilde{C}_i^P(s) = \frac{5}{s(2s+1)} (1 - e^{-0.25s})
$$
\n
$$
= \left(\frac{5}{s} - \frac{10}{2s+1}\right) (1 - e^{-0.25s})
$$
\n
$$
\Rightarrow \tilde{C}_1^P(t) = 5(1 - e^{-t/2})
$$
\n
$$
-5(1 - e^{-(t-0.25)/2}) S(t - 0.25)
$$
\n
$$
\begin{bmatrix}\n\vdots \\
\vdots \\
\vdots\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1.50 \\
\vdots \\
1.25\n\end{bmatrix}
$$

$$
\tilde{C}_1^{\delta}(s) = \frac{1}{2s+1} \tilde{C}_i^{\delta}(s) = \frac{1.25}{(2s+1)}
$$

$$
\Rightarrow \left[\tilde{C}_1^{\delta} = 0.625e^{-t/2} \right]
$$

$$
\tilde{C}_2^P(s) = \frac{1}{(2s+1)(1.5s+1)} \tilde{C}_i^P(s) = \frac{5}{s(2s+1)(1.5s+1)} (1 - e^{-0.25s})
$$

$$
= \left(\frac{5}{s} - \frac{40}{2s+1} + \frac{22.5}{1.5s+1}\right) (1 - e^{-0.25s})
$$

$$
\Rightarrow \begin{vmatrix} \tilde{c}_2^P(t) = (5 - 20e^{-t/2} + 15e^{-t/1.5}) \\ - (5 - 20e^{-(t - 0.25)/2} + 15e^{-(t - 0.25)/1.5}) S(t - 0.25) \end{vmatrix}
$$

