CHBE320 LECTURE VI DYNAMIC BEHAVIORS OF REPRESENTATIVE PROCESSES

Professor Dae Ryook Yang

Fall 2021 Dept. of Chemical and Biological Engineering Korea University

CHBE320 Process Dynamics and Control

Road Map of the Lecture VI

Dynamic Behavior of Representative Processes

- Open-loop responses
 - Step input
 - Impulse input
 - Sinusoidal input
 - Ramp input
- Bode diagram analysis
- Effect of pole/zero location

REPRESENTATIVE TYPES OF RESPONSE

• For step inputs

Y(t)	Type of Model, G(s)
	Nonzero initial slope, no overshoot or nor oscillation, 1 st order model
	1 st order+Time delay
	Underdamped oscillation, 2 nd or higher order
	Overdamped oscillation, 2 nd or higher order
	Inverse response, negative (RHP) zeros
	Unstable, no oscillation, real RHP poles
	Unstable, oscillation, complex RHP poles
	Sustained oscillation, pure imaginary poles

CHBE320 Process Dynamics and Control

1ST ORDER SYSTEM

• First-order linear ODE (assume all deviation variables)

$$\tau \frac{dy(t)}{dt} = -y(t) + Ku(t) \xrightarrow{\mathfrak{L}} (\tau s + 1)Y(s) = KU(s)$$

• Transfer function: $\frac{1}{U}$

$$\frac{Y(s)}{U(s)} = \frac{K}{(\tau s + 1)} \xrightarrow{\bullet} \mathbf{Gain}$$

Time constant

Step response:

With
$$U(s) = A/s$$
,
 $Y(s) = \frac{KA}{s(\tau s + 1)} \xrightarrow{\mathfrak{L}^{-1}} y(t) = KA(1 - e^{-t/\tau})$

 $y(\tau) = KA(1 - e^{-\tau/\tau}) \approx 0.632KA$

-
$$KA(1 - e^{-t/\tau}) \ge 0.99KA \Rightarrow t \approx 4.6\tau$$
 (Settling time= $4\tau \sim 5\tau$)

- $y'(0) = KAe^{-t/\tau}/\tau\Big|_{t=0} = KA/\tau \neq 0$ (Nonzero initial slope)

CHBE320 Process Dynamics and Control

Impulse response

With
$$U(s) = A$$
,
 $Y(s) = \frac{KA}{(\tau s + 1)} \xrightarrow{\mathfrak{L}^{-1}} y(t) = \frac{KA}{\tau} e^{-t/\tau}$

Ramp response

With
$$U(s) = a/s^2$$
,
 $Y(s) = \frac{Ka}{s^2(\tau s + 1)} \xrightarrow{\mathfrak{L}^{-1}} y(t) = Ka\tau e^{-t/\tau} + Ka(t - \tau)$

Sinusoidal response

With $U(s) = \mathfrak{L}[A \sin \omega t] = A\omega/(s^2 + \omega^2),$ $Y(s) = \frac{KA\omega}{(\tau s + 1)(s^2 + \omega^2)} \longrightarrow$

$$y(t) = \frac{KA}{\omega^2 \tau^2 + 1} (\omega \tau e^{-t/\tau} - \omega \tau \cos \omega t + \sin \omega t)$$

CHBE320 Process Dynamics and Control

• Ultimate sinusoidal response $(t \rightarrow \infty)$

$$y_{\infty}(t) = \lim_{t \to \infty} \frac{KA}{\omega^{2}\tau^{2} + 1} (\omega\tau e^{-t/\tau} - \omega\tau\cos\omega t + \sin\omega t)$$

$$= \frac{KA}{\omega^{2}\tau^{2} + 1} (-\omega\tau\cos\omega t + \sin\omega t)$$

$$= \frac{KA}{\omega^{2}\tau^{2} + 1} \sin(\omega t + \varphi) \quad (\varphi = -\tan^{-1}\omega\tau)$$

$$= \frac{M}{\omega^{2}\tau^{2} + 1} \text{Phase angle}$$

- The output has the same period of oscillation as the input.
- But the amplitude is attenuated and the phase is shifted.

Normalized
Amplitude Ratio
(AR_N)
$$= \frac{1}{\sqrt{\omega^2 \tau^2 + 1}} < 1$$
 Phase angle $= -\tan^{-1} \omega \tau$

High frequency input will be attenuated more and phase is shifted more.

BODE PLOT FOR 1ST ORDER SYSTEM

AR plot asymptote

$$AR_N(\omega \to 0) = \lim_{\omega \to 0} \frac{1}{\sqrt{\omega^2 \tau^2 + 1}} = 1$$

$$AR_N(\omega \to \infty) = \lim_{\omega \to \infty} \frac{1}{\sqrt{\omega^2 \tau^2 + 1}} = \frac{1}{\omega \tau}$$

Phase plot asymptote

$$\varphi(\omega \to 0) = -\lim_{\omega \to 0} \tan^{-1} \omega \tau = 0^{\circ}$$

$$\varphi(\omega \to \infty) = -\lim_{\omega \to \infty} \tan^{-1} \omega \tau = -90^{\circ}$$

It is also called "low-pass filter"

1ST ORDER PROCESSES

Continuous Stirred Tank

$$V\frac{dc_A}{dt} = qc_{Ai} - qc_A$$

$$\frac{C_A(s)}{C_{Ai}(s)} = \frac{q}{Vs+q} = \frac{1}{(V/q)s+1}$$

- With constant heat capacity and density

$$\rho V C_p \frac{d(T - T_{ref})}{dt} = \rho q C_p (T_0 - T_{ref}) - \rho q C_p (T - T_{ref})$$

$$T(s) \quad q \qquad 1$$

$$\overline{T_0(s)} = \overline{Vs+q} = \overline{(V/q)s+1}$$

INTEGRATING SYSTEM

•
$$\frac{dy(t)}{dt} = Ku(t) \xrightarrow{\mathfrak{L}} sY(s) = KU(s)$$

- **Transfer Function:** $\frac{Y(s)}{U(s)} = \frac{K}{s}$
- Step Response

With
$$U(s) = 1/s$$
,
 $Y(s) = \frac{K}{s^2} \xrightarrow{\mathfrak{L}^{-1}} y(t) = Kt$

- The output is an integration of input.
- Impulse response is a step function.
- Non self-regulating system

INTEGRATING PROCESSES

Storage tank with constant outlet flow

- Outlet flow is pumped out by a constant-speed, constantvolume pump
- Outlet flow is not a function of head.

$$A\frac{dh}{dt} = q_i - q$$
$$\frac{H(s)}{Q_i(s)} = \frac{1}{As} \qquad \frac{H(s)}{Q(s)} = -\frac{1}{As}$$

CHBE320 Process Dynamics and Control

2ND ORDER SYSTEM

• 2nd order linear ODE

$$\tau^2 \frac{d^2 y(t)}{dt^2} + 2\zeta \tau \frac{dy(t)}{dt} + y(t) = Ku(t) \xrightarrow{\mathfrak{L}} (\tau^2 s^2 + 2\zeta \tau s + 1)Y(s) = KU(s)$$

Transfer Function:

$$\frac{Y(s)}{U(s)} = \frac{K}{(t^2 s^2 + 2\zeta \tau s + 1)} \rightarrow \frac{\text{Gain}}{\text{Time constant}}$$
Damping Coefficient

- Step response
 - Varies with the type of roots of denominator of the TF.
 - Real part of roots should be negative for stability: $\zeta \ge 0$
 - Two distinct real roots ($\zeta > 1$): overdamped (no oscillation)
 - Double root ($\zeta = 1$): critically damped (no oscillation)
 - Complex roots ($0 \le \zeta < 1$): underdamped (oscillation)

CHBE320 Process Dynamics and Control

- **Case I** $(\zeta > 1)$ with U(s) = 1/s $Y(s) = \frac{K}{s(\tau^2 s^2 + 2\zeta \tau s + 1)} = \frac{K}{s(\tau_1 s + 1)(\tau_2 s + 1)} \xrightarrow{\mathfrak{L}^{-1}} y(t) = K\left(1 - \frac{\tau_1 e^{-t/\tau_1} - \tau_2 e^{-t/\tau_2}}{(\tau_1 - \tau_2)}\right)$
- **Case II** $(\zeta = 1)$ $Y(s) = \frac{K}{s(\tau^2 s^2 + 2\tau s + 1)} = \frac{K}{s(\tau s + 1)^2} \xrightarrow{\mathfrak{L}^{-1}} y(t) = K[1 - (1 + t/\tau)e^{-t/\tau}]$

• **Case III**
$$(0 \le \zeta < 1)$$

$$Y(s) = \frac{K}{s(\tau^2 s^2 + 2\zeta\tau s + 1)} \xrightarrow{\mathfrak{L}^{-1}} y(t) = K \left[1 - e^{-\zeta t/\tau} \left\{ \cos \alpha t + \frac{\zeta}{\alpha \tau} \sin \alpha t \right\} \right] \quad (\alpha = \frac{\sqrt{1 - \zeta^2}}{\tau})$$

CHBE320 Process Dynamics and Control

Ultimate sinusoidal response

With
$$U(s) = \mathfrak{L}[A \sin \omega t],$$

 $Y(s) = \frac{KA\omega}{(\tau^2 s^2 + 2\zeta \tau s + 1)(s^2 + \omega^2)} \xrightarrow{\mathfrak{L}^{-1}}$

$$y(t) = \frac{KA}{\sqrt{(1 - \omega^2 \tau^2)^2 + (2\zeta\omega\tau)^2}} \sin(\omega t + \varphi) \qquad (\varphi = -\tan^{-1}\frac{2\zeta\omega\tau}{1 - \omega^2\tau^2})$$

Other method to find ultimate sinusoidal response

For $(s + \alpha + j\omega)$, y(t) has $e^{-(\alpha + j\omega)t}$ and it becomes $e^{-j\omega t}$ as $t \to \infty$ $(\alpha > 0)$.

$$G(s) = \frac{K}{(\tau^2 s^2 + 2\zeta \tau s + 1)} \xrightarrow{s \to j\omega} G(j\omega) = \frac{K}{(1 - \tau^2 \omega^2) + 2j\zeta \tau \omega}$$

$$AR = |G(j\omega)| = \left|\frac{K}{(1 - \tau^2 \omega^2) + j\tau \omega}\right| = \frac{K}{\sqrt{(1 - \omega^2 \tau^2)^2 + (2\zeta \omega \tau)^2}}$$

$$\varphi = \measuredangle G(j\omega) = \tan^{-1} \frac{\operatorname{Im}(G(j\omega))}{\operatorname{Re}(G(j\omega))} = -\tan^{-1} \frac{2\zeta\omega\tau}{1 - \omega^2\tau^2}$$

CHBE320 Process Dynamics and Control

BODE PLOT FOR 2ND ORDER SYSTEM

- **AR plot** $AR_N(\omega \to \infty) = \lim_{\omega \to \infty} \frac{1}{\sqrt{(1 \omega^2 \tau^2)^2 + (2\zeta \omega \tau)^2}} = \frac{1}{(\omega \tau)^2}$
- Phase plot

$$\varphi(\omega \to \infty) = -\lim_{\omega \to \infty} \tan^{-1} \frac{2\zeta\omega\tau}{1 - \omega^2\tau^2} = \lim_{\omega \to \infty} \tan^{-1} \frac{-2\zeta}{-\omega\tau} = -180^{\circ}$$

1ST ORDER VS. 2ND ORDER (OVERDAMPED)

Initial slope of step response

1st order:
$$y'(0) = \lim_{s \to \infty} \{s^2 Y(s)\} = \lim_{s \to \infty} \frac{KAs}{\tau s + 1} = \frac{KA}{\tau} \neq 0$$

2nd order: $y'(0) = \lim_{s \to \infty} \{s^2 Y(s)\} = \lim_{s \to \infty} \frac{KAs}{\tau^2 s^2 + 2\zeta \tau s + 1} = 0$

Shape of the curve (Convexity)

1st order: $y''(t) = -(KA/\tau^2)e^{-t/\tau} < 0$ (For K > 0) \Rightarrow No inflection

2nd order:
$$y''(t) = -\frac{KA}{\tau_1 - \tau_2} \left(\frac{e^{-t/\tau_1}}{\tau_1} - \frac{e^{-t/\tau_2}}{\tau_2}\right)$$

 $(+ \rightarrow -\operatorname{as} t \uparrow) \Rightarrow \operatorname{Inflection}$

CHBE320 Process Dynamics and Control

CHARACTERIZATION OF SECOND ORDER SYSTEM

- 2nd order Underdamped response
 - **Rise time (** t_r **)**

 $t_r = \tau (n\pi - \cos^{-1}\zeta) / \sqrt{1 - \zeta^2} \quad (n = 1)$

- Time to 1^{st} peak (t_p)
 - $t_p = \tau \pi / \sqrt{1 \zeta^2}$
- Settling time (t_s)
 - $t_s \approx -\tau/\zeta \ln(0.05)$
- **Overshoot (OS)** $OS = a/b = \exp\left(-\pi\zeta/\sqrt{1-\zeta^2}\right)$

– Decay ratio (DR): a function of damping coefficient only!

$$DR = c/a = (OS)^2 = \exp\left(-2\pi\zeta/\sqrt{1-\zeta^2}\right)$$

- **Period of oscillation (***P***)** $P = 2\pi\tau/\sqrt{1-\zeta^2}$

CHBE320 Process Dynamics and Control

2ND ORDER PROCESSES

- Two tanks in series
 - If $v_1 = v_2$, critically damped.
 - Or, overdamped (no oscillation) $C_A(s)$ $\frac{1}{C_{Ai}(s)} = \frac{1}{((V_1/q)s + 1)((V_2/q)s + 1)}$

- Spring-dashpot (shock absorber)
 - By force balance

(mg + f(t)) - ky - cv = ma

$$my'' = -ky - cy' + (mg + f(t))$$

$$\left(\sqrt{\frac{m}{k}}\right)^2 y'' + 2 \sqrt{\frac{c^2}{4mk}} \sqrt{\frac{m}{k}} y' + y = \tilde{f}(t)$$

CHBE320 Process Dynamics and Control

τ

Underdamped Processes

- Many examples can be found in mechanical and electrical system.
- Among chemical processes, open-loop underdamped process is quite rare.
- However, when the processes are controlled, the responses are usually underdamped.
- Depending on the controller tuning, the shape of response will be decided.
- Slight overshoot results short rise time and often more desirable.
- Excessive overshoot may result long-lasting oscillation.

POLES AND ZEROS

$$G(s) = \frac{N(s)}{D(s)} = \frac{K(b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + 1)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1)}$$

- **Poles (***D*(*s*)**=0)**
 - Where a transfer function cannot be defined.
 - Roots of the denominator of the transfer function
 - Modes of the response
 - Decide the stability
- Zero (N(s)=0)
 - Where a transfer function becomes zero.
 - Roots of the numerator of the transfer function
 - Decide weightings for each mode of response
 - Decide the size of overshoot or inverse response
- They can be real or complex

- If the pole is at the origin, it becomes "integrating pole."
- If the pole is in RHP, the response increases exponentially.
- **Complex pole from** $(\tau^2 s^2 + 2\zeta \tau s + 1) (-1 < \zeta < 1)$

$$s = -\frac{\zeta}{\tau} \pm j \frac{\sqrt{1-\zeta^2}}{\tau} = -\alpha \pm j\beta$$
$$|s| = \sqrt{\frac{\zeta^2 + 1 - \zeta^2}{\tau^2}} = \frac{1}{\tau} \text{ (function of } \tau \text{ only)}$$

CHBE320 Process Dynamics and Control

- Modes:

$$e^{-\alpha t \pm j\beta t} = e^{-\alpha t} (\cos\beta t \pm j\sin\beta t)$$
$$= e^{-\zeta t/\tau} (\cos\frac{\sqrt{1-\zeta^2}}{\tau}t \pm j\sin\frac{\sqrt{1-\zeta^2}}{\tau}t)$$

- Assume τ is positive.
- If $\zeta < 0$, the exponential part will grow as t increases: unstable
- If $\zeta > 0$, the exponential part will shrink as t increases: stable
- If $\zeta = 0$, the roots are pure imaginary: sustained oscillation
- Effect of zero

$$G(s) = \frac{N(s)}{(s+p_1)\cdots(s+p_n)} = w_1 \frac{1}{(s+p_1)} + \dots + w_n \frac{1}{(s+p_n)}$$

 The effects on weighting factors are not obvious, but it is clear that the numerator (zeros) will change the weighting factors.

EFFECTS OF ZEROS

Lead-lag module

$$G(s) = \frac{N(s)}{D(s)} = \frac{K(\tau_a s + 1)}{(\tau_1 s + 1)} \xrightarrow{} \text{Lead}$$

Depending on the location of zero

$$Y(s) = \frac{KM(\tau_a s + 1)}{s(\tau_1 s + 1)} = KM\left\{\frac{1}{s} + \frac{\tau_a - \tau_1}{\tau_1 s + 1}\right\}$$

$$v(t) = KM\left[1 - \left(1 - \frac{\tau_a}{\tau_1}\right)e^{-t/\tau_1}\right]$$

(a) $\tau_a > \tau_1 > 0$

The lead dominates the lag.

(b) $0 \le \tau_a < \tau_1$

The lag dominates the lead.

(c) $0 > \tau_a$ Inverse response

Overdamped 2nd order+single zero system

$$G(s) = \frac{N(s)}{D(s)} = \frac{K(\tau_a s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

$$Y(s) = \frac{KM(\tau_a s + 1)}{s(\tau_1 s + 1)(\tau_2 s + 1)} = KM\left\{\frac{1}{s} + \frac{\tau_1(\tau_a - \tau_1)}{\tau_1 - \tau_2}\frac{1}{\tau_1 s + 1} + \frac{\tau_2(\tau_a - \tau_2)}{\tau_2 - \tau_1}\frac{1}{\tau_2 s + 1}\right\}$$

$$y(t) = KM \left[1 + \frac{\tau_a - \tau_1}{\tau_1 - \tau_2} e^{-t/\tau_1} + \frac{\tau_a - \tau_2}{\tau_2 - \tau_1} e^{-t/\tau_2} \right]$$

(a) $\tau_a > \tau_1 > 0$ (assume $\tau_1 > \tau_2$) The lead dominates the lags.

- (b) $0 < \tau_a \le \tau_1$ The lags dominate the lead.
- (c) $0 > \tau_a$ Inverse response

CHBE320 Process Dynamics and Control

Other interpretation

$$G(s) = \frac{K(\tau_a s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)} = \frac{K_1}{(\tau_1 s + 1)} + \frac{K_2}{(\tau_2 s + 1)}$$

$$K_1 = \frac{K(\tau_a s + 1)}{(\tau_2 s + 1)}\Big|_{s=-1/\tau_1} = \frac{K(\tau_1 - \tau_a)}{(\tau_1 - \tau_2)}$$

$$K_2 = \frac{K(\tau_a s + 1)}{(\tau_1 s + 1)}\Big|_{s=-1/\tau_2} = \frac{K(\tau_a - \tau_2)}{(\tau_1 - \tau_2)}$$

$$U(s)$$

$$\frac{K_1}{(\tau_1 s + 1)} = \frac{K(\tau_a - \tau_2)}{(\tau_2 s + 1)}$$

– Since $\tau_1 > \tau_2$, 1 is slow dynamics and 2 is fast dynamics.

CHBE320 Process Dynamics and Control

EFFECTS OF POLE LOCATION

CHBE320 Process Dynamics and Control

EFFECTS OF ZERO LOCATION

CHBE320 Process Dynamics and Control