CHBE320 LECTURE VI DYNAMIC BEHAVIORS OF REPRESENTATIVE PROCESSES

Professor Dae Ryook Yang

Professor Dae Ryook Yang
Fall 2021
Dept. of Chemical and Biological Engineering
Korea University
CHBE320 Process Dynamics and Control Korea University 6-1 Fall 2021 Dept. of Chemical and Biological Engineering Korea University

Road Map of the Lecture VI

• Dynamic Behavior of Representative Processes

- Open-loop responses
	- Step input
	- Impulse input
	- Sinusoidal input
	- Ramp input
- Bode diagram analysis
- Effect of pole/zero location

REPRESENTATIVE TYPES OF RESPONSE

1ST ORDER SYSTEM

• First-order linear ODE (assume all deviation variables)

$$
\tau \frac{dy(t)}{dt} = -y(t) + K u(t) \xrightarrow{\mathfrak{L}} (\tau s + 1) Y(s) = K U(s)
$$

• Transfer function:

$$
\frac{Y(s)}{U(s)} = \frac{K}{(\sqrt{1s+1})} \rightarrow \text{Time constant}
$$

• Step response:

Transfer function:

\n
$$
\frac{Y(s)}{U(s)} = \frac{K}{(\tau s + 1)} \rightarrow T
$$
\n**Step response:**

\nWith $U(s) = A/s$,

\n
$$
Y(s) = \frac{KA}{s(\tau s + 1)} \xrightarrow{g^{-1}} y(t) = KA(1 - e^{-t/\tau})
$$
\n
$$
y(\tau) = KA(1 - e^{-\tau/\tau}) \approx 0.632KA
$$
\n
$$
= KA(1 - e^{-t/\tau}) \ge 0.99KA \Rightarrow t \approx 4.6\tau \text{ (Setting time=4}\tau \sim 5\tau)
$$
\n
$$
= y'(0) = K A e^{-t/\tau}/\tau \Big|_{t=0} = KA/\tau \neq 0 \text{ (Nonzero initial slope)}
$$
\n10 Process Dynamics and Control

$$
y(\tau) = KA(1 - e^{-\tau/\tau}) \approx 0.632KA
$$

$$
- K A (1 - e^{-t/\tau}) \ge 0.99 KA \Rightarrow t \approx 4.6\tau \text{ (Setting time=4\tau \sim 5\tau)}
$$

 $y'(0) = K A e^{-t/\tau}/\tau$ = K.

• Impulse response

With
$$
U(s) = A
$$
,
\n $Y(s) = \frac{KA}{(\tau s + 1)} \xrightarrow{\varrho^{-1}} y(t) = \frac{KA}{\tau} e^{-t/\tau}$

• Ramp response

With
$$
U(s) = a/s^2
$$
,
\n
$$
Y(s) = \frac{Ka}{s^2(\tau s + 1)} \xrightarrow{\varrho^{-1}} y(t) = Ka\tau e^{-t/\tau} + Ka(t - \tau)
$$

• Sinusoidal response

With $U(s) = \mathfrak{L}[A \sin \omega t] = A\omega/(s^2 + \omega^2)$, $\Big|_{KA}$ $(2 + \omega^2)$ \mathfrak{L}^{-1} $\sqrt{\omega^2 \tau^2 + \omega^2 \tau^2}$

$$
y(t) = \frac{KA}{\omega^2 \tau^2 + 1} (\omega \tau e^{-t/\tau} - \omega \tau \cos \omega t + \sin \omega t)
$$

- Ultimate sinusoidal response $(t\rightarrow\infty)$ $V_{\infty}(t) = \lim_{t \to \infty} \frac{nA}{\omega^2 \tau^2 + 1} (\omega \tau e^{-t/\tau} - \omega \tau \cos \omega t + \sin \omega t)$
 $= \frac{KA}{\sqrt{\omega^2 \tau^2 + 1}} (-\omega \tau \cos \omega t + \sin \omega t)$
 $= \frac{KA}{\sqrt{\omega^2 \tau^2 + 1}} \sin(\omega t + \varphi) \quad (\varphi = -\tan^{-1} \omega \tau)$

Phase angle

Amplitude

The output has the same period of osci $\sigma(\ell)$ – $\lim_{t\to\infty} \frac{1}{\omega^2 \tau^2 + 1}$ ($\omega \ell$, – $\omega \ell$ cos $\omega \ell$ + $\zeta-t/\tau = \omega \tau \cos \omega t + \sin \theta$ $272 + 1$ ω cos ω c β $2\tau^2+1$ $\left\langle \frac{1}{2}\right\rangle$ $^{-1}$ (e) τ) $\overline{0}$ Amplitude **Phase angle**
	- The output has the same period of oscillation as the input.
	-

$$
\sqrt{\omega^2 \tau^2 + 1}
$$
\nPhase angle

\nAmplitude

\n- The output has the same period of oscillation as the input.

\n- But the amplitude is attenuated and the phase is shifted.

\nNormalized

\nAmplitude Ratio

\n
$$
= \frac{1}{\sqrt{\omega^2 \tau^2 + 1}} < 1
$$

\nPhase angle

\n
$$
= -\tan^{-1} \omega \tau
$$

\n(AR_N)

\n- High frequency input will be attenuated more and phase is shifted more.

\nCHBE320 Process Dynamics and Control

\nKorea University

\n6-6

shifted more.

BODE PLOT FOR 1ST ORDER SYSTEM

• AR plot asymptote

$$
AR_N(\omega \to 0) = \lim_{\omega \to 0} \frac{1}{\sqrt{\omega^2 \tau^2 + 1}} = 1
$$
\n
$$
AR_N(\omega \to \infty) = \lim_{\omega \to \infty} \frac{1}{\sqrt{\omega^2 \tau^2 + 1}} = \frac{1}{\omega \tau}
$$
\nNormalized amplitude of \mathbb{R} and \mathbb{R} and \mathbb{R} and \mathbb{R} are the following matrices.

• Phase plot asymptote **Fig. 1.30**

 $\omega \rightarrow 0$ r^{-1} $(0.7 - 0)^{0}$

$$
\varphi(\omega \to \infty) = -\lim_{\omega \to \infty} \tan^{-1} \omega \tau = -90^{\circ}
$$

• It is also called "low-pass filter"

1ST ORDER PROCESSES

• Continuous Stirred Tank

$$
V\frac{dc_A}{dt} = qc_{Ai} - qc_A
$$

$$
\frac{C_A(s)}{C_{Ai}(s)} = \frac{q}{Vs + q} = \frac{1}{(V/q)s + 1}
$$

– With constant heat capacity and density

– With constant heat capacity and density

\n
$$
\rho V C_p \frac{d(T - T_{ref})}{dt} = \rho q C_p (T_0 - T_{ref})
$$
\n
$$
- \rho q C_p (T - T_{ref})
$$
\n
$$
\frac{T(s)}{T_0(s)} = \frac{q}{Vs + q} = \frac{1}{(V/q)s + 1}
$$
\nCHBE320 Process Dynamics and Control

\nKorea University 6-8

INTEGRATING SYSTEM

•
$$
\frac{dy(t)}{dt} = Ku(t) \xrightarrow{\Omega} sY(s) = KU(s)
$$

- Transfer Function: $\frac{Y(s)}{U(s)} = \frac{K}{s}$
- Step Response

With
$$
U(s) = 1/s
$$
,
\n $Y(s) = \frac{K}{s^2} \xrightarrow{g^{-1}} y(t) = Kt$

- The output is an integration of input.
- Impulse response is a step function.
-

INTEGRATING PROCESSES

• Storage tank with constant outlet flow

- Outlet flow is pumped out by a constant-speed, constantvolume pump
- Outlet flow is not a function of head.

$$
A \frac{dh}{dt} = q_i - q
$$
\n
$$
\frac{H(s)}{Q_i(s)} = \frac{1}{As} \qquad \frac{H(s)}{Q(s)} = -\frac{1}{As}
$$
\n
$$
\text{Area} = \text{A} \qquad \text{Area} = \text{A}
$$
\n
$$
\text{Area} = \text{A} \qquad \text{Area} = \text{A}
$$
\n
$$
\text{Area} = \text{A} \qquad \text{Area} = \text{A}
$$

2ND ORDER SYSTEM

• 2nd order linear ODE

$$
\tau^2 \frac{d^2 y(t)}{dt^2} + 2\zeta \tau \frac{dy(t)}{dt} + y(t) = K u(t) \frac{\mathfrak{L}}{\tau^2} (\tau^2 s^2 + 2\zeta \tau s + 1) Y(s) = K U(s)
$$

• Transfer Function:

- Step response
	- Varies with the type of roots of denominator of the TF.
		- Real part of roots should be negative for stability: $\zeta \geq 0$
		- Two distinct real roots ($\zeta > 1$): overdamped (no oscillation)
		- Double root ($\zeta = 1$): critically damped (no oscillation)
		- Complex roots ($0 \le \zeta < 1$): underdamped (oscillation)

- **Case I** $(ζ > 1)$ with $U(s)=1/s$ 2 s² + 27 ts + 1) s(t₁ s + 3 $15 + 1$ $(125 + 1)$ | \mathbb{R}^{-1} $\bigcup_{x \in (t)} \mathbb{Z} \left[\begin{array}{cc} 1 & \tau_1 e^{-t/\tau_1} - \tau_2 e^{-t/\tau_2} \end{array} \right]$ $1 - \iota_2$ /
- **Case II** $(\zeta = 1)$ $(2s^2 + 2\tau s + 1)$ $s(\tau s + 1)^2$ $[1(s^2 - n)^2]$ \mathbb{R}^{-1}
 \mathbb{R}^{t} $(t) = K[1 - (1 + t/\tau)e^{-t/\tau}]$

• Ultimate sinusoidal response

With
$$
U(s) = \mathcal{L}[A \sin \omega t],
$$

\n
$$
Y(s) = \frac{KA\omega}{(\tau^2 s^2 + 2\zeta \tau s + 1)(s^2 + \omega^2)} \longrightarrow
$$

$$
y(t) = \frac{KA}{\sqrt{(1 - \omega^2 \tau^2)^2 + (2\zeta \omega \tau)^2}} \sin(\omega t + \varphi) \qquad (\varphi = -\tan^{-1} \frac{2\zeta \omega \tau}{1 - \omega^2 \tau^2})
$$

– Other method to find ultimate sinusoidal response

For $(s + \alpha + j\omega)$, $y(t)$ has $e^{-(\alpha + j\omega)t}$ and it becomes $e^{-j\omega t}$ as $t \to \infty$ $(\alpha > 0)$.

$$
G(s) = \frac{K}{(\tau^2 s^2 + 2\zeta \tau s + 1)} \xrightarrow{s \to j\omega} G(j\omega) = \frac{K}{(1 - \tau^2 \omega^2) + 2j\zeta \tau \omega}
$$

For
$$
(s + \alpha + j\omega)
$$
, $y(t)$ has $e^{-(\alpha + j\omega)t}$ and it becomes $e^{-j\omega t}$ as $t \to \infty$ ($\alpha > 0$).
\n
$$
G(s) = \frac{K}{(\tau^2 s^2 + 2\zeta \tau s + 1)} \xrightarrow{s \to j\omega} G(j\omega) = \frac{K}{(1 - \tau^2 \omega^2) + 2j\zeta \tau \omega}
$$
\n
$$
AR = |G(j\omega)| = \left| \frac{K}{(1 - \tau^2 \omega^2) + j\tau \omega} \right| = \frac{K}{\sqrt{(1 - \omega^2 \tau^2)^2 + (2\zeta \omega \tau)^2}}
$$
\n
$$
\varphi = 4G(j\omega) = \tan^{-1} \frac{\text{Im}(G(j\omega))}{\text{Re}(G(j\omega))} = -\tan^{-1} \frac{2\zeta \omega \tau}{1 - \omega^2 \tau^2}
$$
\n**CHBE320 Process Dynamics and Control**

$$
\varphi = \angle G(j\omega) = \tan^{-1} \frac{\text{Im}(G(j\omega))}{\text{Re}(G(j\omega))} = -\tan^{-1} \frac{2\zeta\omega\tau}{1 - \omega^2 \tau^2}
$$

BODE PLOT FOR 2ND ORDER SYSTEM

- AR plot $N(\omega \to \omega) = \lim_{\omega \to \infty} \frac{1}{\sqrt{(1 - \omega^2 \tau^2)^2 + (27\omega \tau)^2}} = \frac{1}{(\omega \tau)^2}$ $2 \left(\frac{1}{2} \right)$
- Phase plot $\varphi(\omega \to \infty) = -\lim_{\omega \to \infty} \tan^{-1} \frac{\omega}{1 \omega^2 \tau^2} = \lim_{\omega \to \infty} \tan^{-1} \frac{\omega}{1 \omega \tau} = -1 \frac{2500}{\mu}$ = lim tan⁻¹. $2\tau^2$ and $-\omega\tau$ and $-\omega\tau$ $-1 \frac{25}{} = -180^{\circ}$

1ST ORDER VS. 2ND ORDER (OVERDAMPED)

• Initial slope of step response

1st order:
$$
y'(0) = \lim_{s \to \infty} \{s^2 Y(s)\} = \lim_{s \to \infty} \frac{KAs}{\tau s + 1} = \frac{KA}{\tau} \neq 0
$$

 (0) = $\lim_{\epsilon \to 0}$ $s\rightarrow\infty$ $s\rightarrow\infty$ $\tau^2s^2 + 2(\tau s + 1)$ ${}^{2}V(s)$ = \lim — $\frac{1}{s}$ $\int_{s\to\infty}^{t\text{min}} \tau^2 s^2 + 2\zeta \tau s + 1$

• Shape of the curve (Convexity)

1st order: $y''(t) = -(KA/\tau^2)e^{-t/\tau} < 0$ (For $K > 0$) \Rightarrow No inflection

• **Shape of the curve (Convexity)**
\n1st order:
$$
y''(t) = -(KA/\tau^2)e^{-t/\tau} < 0
$$
 (For $K > 0$) \Rightarrow No inflection
\n2nd order: $y''(t) = -\frac{KA}{\tau_1 - \tau_2}(\frac{e^{-t/\tau_1}}{\tau_1} - \frac{e^{-t/\tau_2}}{\tau_2})$
\n $(+\rightarrow -$ as $t \uparrow$) \Rightarrow Inflection
\nCHBE320 Process Dynamics and Control
\nKorea University 6-15

CHARACTERIZATION OF SECOND ORDER **SYSTEM** HARACTERIZATION OF SECO

SYSTEM

nd order Underdamped response

- Rise time (t_r)
 $t_r = \tau (n\pi - \cos^{-1} \zeta) / \sqrt{1 - \zeta^2}$ (n = 1) HARACTERIZATION OF SECOND

SYSTEM

nnd order Underdamped response
 $t_r = \tau (n\pi - \cos^{-1}\zeta)/\sqrt{1-\zeta^2}$ (n = 1)
 $-\text{Time to } 1^{\text{st}} \text{ peak } (t_p)$
 $t_p = \tau \pi/\sqrt{1-\zeta^2}$

Settling time (i) **RACTERIZATION OF SECON

SYSTEM**

order Underdamped response

tise time (t_r)
 $t_r = \tau (n\pi - \cos^{-1} \zeta)/\sqrt{1-\zeta^2}$ $(n = 1)$

The to 1st peak (t_p)
 $t_p = \tau \pi/\sqrt{1-\zeta^2}$

ettling time (t_s)
 $t_r \approx -\tau/\zeta \ln(0.05)$

- 2nd order Underdamped response
	-)

-) and the set of $\overline{}$
-) and $\overline{}$
	-
-

$$
DR = c/a = (OS)^2 = \exp(-2\pi\zeta/\sqrt{1-\zeta^2})
$$

2ND ORDER PROCESSES

- Two tanks in series
	- $-$ If $v_1 = v_2$, critically damped.
	- Or, overdamped (no oscillation)

 $A(S)$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ \qquad $\qquad \qquad$ \qquad \qquad $Ai(S)$ $((V_1/q)S + 1)((V_2/q)S + 1)$

- Spring-dashpot (shock absorber)
	- By force balance

$$
my'' = -ky - cy' + (mg + f(t))
$$

$$
\left(\sqrt{\frac{m}{k}}\right)^2 y'' + 2\sqrt{\frac{c^2}{4mk}}\sqrt{\frac{m}{k}}y' + y = \tilde{f}(t)
$$

 τ ζ (can be <1: underdamped)

Underdamped Processes

- Many examples can be found in mechanical and electrical system.
- Among chemical processes, open-loop underdamped process is quite rare.
- However, when the processes are controlled, the responses are usually underdamped.
- Depending on the controller tuning, the shape of response will be decided.
- responses are usually underdamped.

 Depending on the controller tuning, the shape of

response will be decided.

 Slight overshoot results short rise time and often

more desirable.

 Excessive overshoot may result lon • Slight overshoot results short rise time and often more desirable.
	- Excessive overshoot may result long-lasting oscillation.

POLES AND ZEROS

$$
G(s) = \frac{N(s)}{D(s)} = \frac{K(b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + 1)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1)}
$$

- Poles $(D(s)=0)$
	- Where a transfer function cannot be defined.
	- Roots of the denominator of the transfer function
	- Modes of the response
	- Decide the stability
- Zero $(N(s)=0)$
	- Where a transfer function becomes zero.
	- Roots of the numerator of the transfer function
	- Decide weightings for each mode of response
	- Decide the size of overshoot or inverse response
- Moutes of the response

 Decide the stability

 Zero $(N(s)=0)$

 Where a transfer function becomes zero.

 Roots of the numerator of the transfer function

 Decide weightings for each mode of response

 Decide the s • They can be real or complex

- If the pole is at the origin, it becomes "integrating pole."
- If the pole is in RHP, the response increases exponentially.
- Complex pole from $(\tau^2 s^2 + 2\zeta \tau s + 1)$ $(-1 < \zeta$

• Complex pole from
$$
(\tau^2 s^2 + 2\zeta \tau s + 1)
$$
 $(-1 < \zeta < 1)$
\n
$$
s = -\frac{\zeta}{\tau} \pm j \frac{\sqrt{1 - \zeta^2}}{\tau} = -\alpha \pm j\beta
$$
\n
$$
|s| = \sqrt{\frac{\zeta^2 + 1 - \zeta^2}{\tau^2}} = \frac{1}{\tau}
$$
 (function of τ only)
\n
$$
4s = \pm \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}
$$
 (function of ζ only)
\n
$$
\zeta = \cos \theta
$$

– Modes:

des:

\n
$$
e^{-\alpha t \pm j\beta t} = e^{-\alpha t} (\cos \beta t \pm j \sin \beta t)
$$
\n
$$
= e^{-\zeta / \tau} (\cos \frac{\sqrt{1 - \zeta^2}}{\tau} t \pm j \sin \frac{\sqrt{1 - \zeta^2}}{\tau} t)
$$
\nis positive.

\n $\zeta < 0$, the exponential part will grow as *t* increases: unstable

\n $\zeta > 0$, the exponential part will shrink as *t* increases: stable

\n $\zeta = 0$, the roots are pure imaginary: sustained oscillation

\n**t** of zero

- Assume τ is positive.
- If $\zeta < 0$, the exponential part will grow as t increases: unstable
- If $\zeta > 0$, the exponential part will shrink as t increases: stable
- $-$ If $\zeta = 0$, the roots are pure imaginary: sustained oscillation
- Effect of zero

$$
G(s) = \frac{N(s)}{(s+p_1)\cdots(s+p_n)} = w_1 \frac{1}{(s+p_1)} + \cdots + w_n \frac{1}{(s+p_n)}
$$

• Effect of zero
 $G(s) = \frac{N(s)}{(s+p_1)\cdots(s+p_n)} = w_1 \frac{1}{(s+p_1)} + \cdots + w_n \frac{1}{(s+p_n)}$

– The effects on weighting factors are not obvious, but it is clear

that the numerator (zeros) will change the weighting factors.

CHBE320 Proce – The effects on weighting factors are not obvious, but it is clear If $\zeta > 0$, the exponential part will silflik as *t* increases: stable

If $\zeta = 0$, the roots are pure imaginary: sustained oscillation
 Conceptibility
 $G(s) = \frac{N(s)}{(s+p_1)\cdots(s+p_n)} = w_1 \frac{1}{(s+p_1)} + \cdots + w_n \frac{1}{(s+p_n)}$

The ef

EFFECTS OF ZEROS

• Lead-lag module

$$
G(s) = \frac{N(s)}{D(s)} = \frac{K(\tau_a s + 1)}{(\tau_1 s + 1)} \longrightarrow \text{lead}
$$

Depending on the location of zero

$$
Y(s) = \frac{KM(\tau_a s + 1)}{s(\tau_1 s + 1)} = KM \left\{ \frac{1}{s} + \frac{\tau_a - \tau_1}{\tau_1 s + 1} \right\} \qquad y(t) = KM \left[1 - \left(1 - \frac{\tau_a}{\tau_1} \right) e^{-t/\tau_1} \right]
$$

(a) $\tau_a > \tau_1 > 0$

The lead dominates the lag.

(b) $0 \le \tau_a < \tau_1$

The lag dominates the lead. $\frac{y(t)}{KM}$

(c) $0 > \tau_a$ Inverse response α

• Overdamped 2nd order+single zero system
 $G(s) = \frac{N(s)}{D(s)} = \frac{K(\tau_a s + 1)}{(s - s + 1)(\tau_a s + 1)}$

$$
G(s) = \frac{N(s)}{D(s)} = \frac{K(\tau_a s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)}
$$

$$
Y(s) = \frac{KM(\tau_a s + 1)}{s(\tau_1 s + 1)(\tau_2 s + 1)} = KM \left\{ \frac{1}{s} + \frac{\tau_1(\tau_a - \tau_1)}{\tau_1 - \tau_2} \frac{1}{\tau_1 s + 1} + \frac{\tau_2(\tau_a - \tau_2)}{\tau_2 - \tau_1} \frac{1}{\tau_2 s + 1} \right\}
$$

$$
y(t) = KM \left[1 + \frac{\tau_a - \tau_1}{\tau_1 - \tau_2} e^{-t/\tau_1} + \frac{\tau_a - \tau_2}{\tau_2 - \tau_1} e^{-t/\tau_2} \right]
$$

(a)
$$
\tau_a > \tau_1 > 0
$$
 (assume $\tau_1 > \tau_2$)
The lead dominates the lags.

- (b) $0 < \tau_a \leq \tau_1$ The lags dominate the lead.
- (c) $0 > \tau_a$ Inverse response

• Other interpretation

Other interpretation
\n
$$
G(s) = \frac{K(\tau_a s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)} = \frac{K_1}{(\tau_1 s + 1)} + \frac{K_2}{(\tau_2 s + 1)}
$$
\n
$$
K_1 = \frac{K(\tau_a s + 1)}{(\tau_2 s + 1)}\Big|_{s = -1/\tau_1} = \frac{K(\tau_1 - \tau_a)}{(\tau_1 - \tau_2)}
$$
\n
$$
K_2 = \frac{K(\tau_a s + 1)}{(\tau_1 s + 1)}\Big|_{s = -1/\tau_2} = \frac{K(\tau_a - \tau_2)}{(\tau_1 - \tau_2)}
$$
\n
$$
= \text{Since } \tau_1 > \tau_2, \text{ 1 is slow dynamics and 2 is fast dynamics.}
$$
\n
$$
\frac{\tau_a > \tau_1}{\tau_a > \tau_1}
$$
\n
$$
\frac{K_1}{\tau_a > \tau_1} = \frac{V_1(t)}{V_1(t)} = \frac{\tau_1 \ge \tau_a > 0}{\tau_1} = \frac{V_1(t)}{V_1(t)} = \frac{\tau_a < 0}{\tau_a > 0}
$$
\n
$$
V_1(t) = \frac{\tau_a < 0}{\tau_a > \tau_a} = \frac{V_1(t)}{V_1(t)} = \frac{\tau_a < 0}{\tau_a > 0}
$$
\n
$$
V_1(t) = \frac{\tau_a < 0}{\tau_a > 0}
$$
\n
$$
V_2(t) = \frac{K_2 < 0}{\tau_a > 0}
$$

 $-$ Since $\tau_1 > \tau_2$, 1 is slow dynamics and 2 is fast dynamics.

EFFECTS OF POLE LOCATION

EFFECTS OF ZERO LOCATION

