CHBE320 LECTURE IX FREQUENCY RESPONSES

Professor Dae Ryook Yang

Professor Dae Ryook Yang
Fall 2021
Dept. of Chemical and Biological Engineering
Korea University
CHBE320 Process Dynamics and Control Korea University 9-1 Fall 2021 Dept. of Chemical and Biological Engineering Korea University

Road Map of the Lecture IX

- Frequency Response
	- Definition
	- Benefits of frequency analysis
	- How to get frequency response
	- Bode Plot
	- Nyquist Diagram

DEFINITION OF FREQUENCY RESPONSE

• For linear system

DEFINITION OF FREQUENCY RESPONSE

For linear system

– "The ultimate output response of a process for a sinusoidal

input at a frequency will show amplitude change and phase

shift at the same frequency depending on the FINITION OF FREQUENCY RESPONSE
r linear system
"The ultimate output response of a process for a sinusoidal
input at a frequency will show amplitude change and phase
shift at the same frequency depending on the process
char **FINITION OF FREQUENCY RESPONSE**
r linear system
"The ultimate output response of a process for a sinusoidal
input at a frequency will show amplitude change and phase
shift at the same frequency depending on the process
c characteristics."

- Amplitude ratio (AR): attenuation of amplitude, \hat{A}/A
-
-

BENEFITS OF FREQUENCY RESPONSE

- Frequency responses are the informative representations of dynamic systems
	- Audio Speaker

Expensive

– High-pass filter

– In signal processing field, transfer functions are called "filters".

- Any linear dynamical system is completely defined by its frequency response.
	- The AR and phase angle define the system completely.
	- Bode diagram
		- AR in log-log plot
		- Phase angle in log-linear plot
	- Via efficient numerical technique (fast Fourier transform, FFT), the output can be calculated for any type of input.
- Frequency response representation of a system
dynamics is very convenient for designing a
feedback controller and analyzing a closed-loop
system.
- Bode stability
- Gain margin (GM) and phase margin (PM)
CHBE320 Process • Frequency response representation of a system dynamics is very convenient for designing a feedback controller and analyzing a closed-loop system.
	- Bode stability
	- Gain margin (GM) and phase margin (PM)

• Critical frequency

- $-$ As frequency changes, the amplitude ratio (AR) and the phase angle (PA) change.
- The frequency where the PA reaches –180° is called critical frequency (ω_c) .
- The component of output at the critical frequency will have the exactly same phase as the signal goes through the loop due to comparator (-180 °) and phase shift of the process (-180 °). the phase

ritical

1 have the

1 due to

30 °).
 $) = 1$

nge

1 \uparrow ency where the PA reaches -180° is ca

(ω_c).

onent of output at the critical frequen

me phase as the signal goes through th

or (-180 °) and phase shift of the proce

pen-loop gain at the critical frequency,

nge in
- For the open-loop gain at the critical frequency, $K_{OL}(\omega_c) = 1$
	- No change in magnitude
	- Continuous cycling
- $-$ For $K_{OL}(\omega_c) > 1$
	- Getting bigger in magnitude
	- Unstable
- $-$ For $K_{OL}(\omega_c)$ < 1
	- Getting smaller in magnitude
	- Stable

• Example

– If a feed is pumped by a peristaltic pump to a CSTR, will the fluctuation of the feed flow appear in the output?

- $-$ V=50cm³, q=90cm³/min (so is the average of q_i) $\qquad \qquad$
	- Process time constant=0.555min.
- The rpm of the peristaltic pump is 60rpm.
	- Input frequency=180rad/min (3blades)
- The $AR=0.01$ ($\omega \tau = 100$)

If the magnitude of fluctuation of q_i is 5% of nominal \bullet flow rate, the fluctuation in the output concentration will be about 0.05% which is almost unnoticeable.

 t

OBTAINING FREQUENCY RESPONSE **BTAINING FREQUENCY RESPONS**

m the transfer function, replace s with $j\omega$
 $G(s) \xrightarrow{s=j\omega} G(j\omega)$

Transfer function Frequency response

For a pole, $s = \alpha + j\omega$, the response mode is $e^{(\alpha + j\omega)t}$.

f the modes are not unstab

• From the transfer function, replace s with $j\omega$ $j\omega$ and the set of ω and $\$

- For a pole, $s = \alpha + j\omega$, the response mode is $e^{(\alpha + j\omega)t}$.
- If the modes are not unstable ($\alpha \le 0$) and enough time elapses, the survived modes becomes $e^{j\omega t}$. (ultimate response) ENCY RESPONSE

 α , replace *s* with $j\omega$

 $\alpha \le 0$) and enough time elapses,
 $\alpha \le 0$) and enough time elapses,
 α (ultimate response)
 $\beta(j\omega)$ is complex as a
- The frequency response, $\mathit{G(j\omega)}$ is complex as a function of frequency. _{Im} Nyquist diagram

Re

• Getting ultimate response

– For a sinusoidal forcing function $Y(s) = G(s) \frac{A\omega}{s^2 + \omega^2}$

– Assume $G(s)$ has stable poles b_i .

$$
Y(s) = G(s) \frac{A\omega}{s^2 + \omega^2}
$$

Decayed out at large *t*

$$
Cs + D\omega
$$

 \bullet Decayed out at large t

etting ultimate response
\nFor a sinusoidal forcing function
$$
Y(s) = G(s) \frac{A\omega}{s^2 + \omega^2}
$$

\nAssume $G(s)$ has stable poles b_i , $\log_2 \theta$ because ω at large t
\n
$$
Y(s) = G(s) \frac{A\omega}{s^2 + \omega^2} = \frac{\alpha_1}{s + b_1} + \dots + \frac{\alpha_n}{s + b_n} + \frac{\zeta_s + D\omega}{s^2 + \omega^2}
$$
\n
$$
G(j\omega)A\omega = Cj\omega + D\omega \Rightarrow G(j\omega) = \frac{D}{A} + j\frac{C}{A} = R + jI
$$
\n
$$
C = IA, D = RA \Rightarrow y_{ul} = A(I\cos\omega t + R\sin\omega t) = \hat{A}\sin(\omega t + \phi)
$$
\n
$$
\therefore AR = \hat{A}/A = \sqrt{R^2 + I^2} = |G(j\omega)| \quad \text{and} \quad \phi = \tan^{-1}(I/R) = \angle G(j\omega)
$$
\n**Without calculating transient response, the frequency response**

$$
G(j\omega)A\omega = Cj\omega + D\omega \Rightarrow G(j\omega) = \frac{D}{A} + j\frac{C}{A} = R + jI
$$

$$
C = IA, D = RA \Rightarrow y_{ul} = A(I \cos \omega t + R \sin \omega t) = \hat{A} \sin(\omega t + \phi)
$$

$$
\therefore AR = \hat{A}/A = \sqrt{R^2 + I^2} = |G(j\omega)| \quad \text{and} \quad \phi = \tan^{-1}(I/R) = \frac{\mathcal{A}}{G(j\omega)}
$$

- Without calculating transient response, the frequency response can be obtained directly from $G(j\omega)$.
- $\therefore AR = \hat{A}/A = \sqrt{R^2 + I^2} = |G(j\omega)|$ and $\phi = \tan^{-1}(I/R) = \alpha G(j\omega)$

 Without calculating transient response, the frequency response

can be obtained directly from $G(j\omega)$.

 Unstable transfer function does not have a frequency – Unstable transfer function does not have a frequency response because a sinusoidal input produces an unstable output response.

• First-order process

First-order process
\n
$$
G(s) = \frac{K}{(\tau s + 1)}
$$
\n
$$
G(j\omega) = \frac{K}{(1 + j\omega\tau)} = \frac{K}{(1 + \omega^2\tau^2)}(1 - j\omega\tau)
$$
\n
$$
AR_N = |G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$
\n
$$
\phi = \angle G(j\omega) = -\tan^{-1}(\omega\tau)
$$
\n**Second-order process**
\n
$$
G(s) = \frac{K}{(\tau^2 s^2 + 2\zeta\tau s + 1)}
$$
\n
$$
G(j\omega) = \frac{K}{(1 - \tau^2 \omega^2) + 2j\zeta\tau\omega}
$$
\n
$$
G(j\omega) = \frac{K}{(\sqrt{1 + \omega^2\tau^2}) + 2j\zeta\tau\omega}
$$
\n
$$
G(\omega) = \frac{K}{(\sqrt{1 + \omega^2\tau^2}) + 2j\zeta\tau\omega}
$$
\n
$$
G(\omega) = \frac{K}{(\sqrt{1 + \omega^2\tau^2}) + 2j\zeta\tau\omega}
$$

$$
\phi = 4G(j\omega) = -\tan^{-1}(\omega \tau)
$$

• Second-order process

$$
G(j\omega) = \frac{1}{(1 + j\omega\tau)} = \frac{1}{(1 + \omega^2\tau^2)}(1 - j\omega\tau)
$$

\n
$$
AR_N = |G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$

\n
$$
\phi = 4G(j\omega) = -\tan^{-1}(\omega\tau)
$$

\n**Second-order process**
\n
$$
G(s) = \frac{K}{(\tau^2s^2 + 2\zeta\tau s + 1)}
$$

\n
$$
G(j\omega) = \frac{K}{(1 - \tau^2\omega^2) + 2j\zeta\tau\omega}
$$

\n
$$
AR = |G(j\omega)| = \frac{K}{\sqrt{(1 - \omega^2\tau^2)^2 + (2\zeta\omega\tau)^2}}
$$

\n
$$
\phi = 4G(j\omega) = \tan^{-1}\frac{\text{Im}(G(j\omega))}{\text{Re}(G(j\omega))} = -\tan^{-1}\frac{2\zeta\omega\tau}{1 - \omega^2\tau^2}
$$

\n
$$
\phi = 320 \text{ Process Dynamics and Control}
$$

\n
$$
K
$$

• Process Zero (lead)

$$
G(j\omega) = 1 + j\omega\tau_a
$$

$$
AR_N = |G(j\omega)| = \sqrt{1 + \omega^2 \tau_a^2}
$$

$$
\phi = 4G(j\omega) = \tan^{-1}(\omega \tau_a)
$$

• Unstable pole

$$
G(j\omega) = 1 + j\omega\tau_a
$$
\n
$$
AR_N = |G(j\omega)| = \sqrt{1 + \omega^2\tau_a^2}
$$
\n
$$
\phi = \angle G(j\omega) = \tan^{-1}(\omega\tau_a)
$$
\n
$$
GR = |G(j\omega)| = \frac{1}{1 - j\tau\omega} = \frac{1}{1 + \tau^2\omega^2} (1 + j\tau\omega)
$$
\n
$$
AR = |G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$
\n
$$
\phi = \angle G(j\omega) = \tan^{-1}\frac{\ln(G(j\omega))}{\frac{\log(1 + j\tau\omega)}{\log(N\omega)}} = \tan^{-1}\omega\tau
$$
\n
$$
G(j\omega) = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$
\n
$$
\phi = \angle G(j\omega) = \tan^{-1}\frac{\ln(G(j\omega))}{\text{Re}(G(j\omega))} = \tan^{-1}\omega\tau
$$
\n
$$
G(j\omega) = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$
\n
$$
\phi = \frac{1}{\sqrt{1 + \omega^2\tau^2}} \exp\left(-\frac{\sqrt{1 + \omega^2\tau^2}}{\sqrt{1 + \omega^2\tau^2}}\right)
$$
\n
$$
G(j\omega) = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$
\n
$$
\phi = \frac{1}{\sqrt{1 + \omega^2\tau^2}} \exp\left(-\frac{\sqrt{1 + \omega^2\tau^2}}{\sqrt{1 + \omega^2\tau^2}}\right)
$$
\n
$$
G(j\omega) = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$
\n
$$
\phi = \frac{1}{\sqrt{1 + \omega^2\tau^2}} \exp\left(-\frac{\sqrt{1 + \omega^2\tau^2}}{\sqrt{1 + \omega^2\tau^2}}\right)
$$
\n
$$
G(j\omega) = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$
\n
$$
\phi = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$
\n
$$
\phi = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$
\n
$$
G(j\omega) = \frac{1}{\sqrt{1 + \omega^2\tau^2}}
$$

$$
AR = |G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 \tau^2}}
$$

$$
\phi = \angle G(j\omega) = \tan^{-1} \frac{\text{Im}(G(j\omega))}{\text{Re}(G(j\omega))} = \tan^{-1} \omega \tau
$$

• Integrating process

Integrating process
\n
$$
G(s) = \frac{1}{As} \qquad G(j\omega) = \frac{1}{jA\omega} = -\frac{1}{A\omega}j
$$
\n
$$
AR_N = |G(j\omega)| = \frac{1}{A\omega} \qquad \qquad \text{and} \
$$

$$
AR_N = |G(j\omega)| = \frac{1}{A\omega}
$$

$$
\phi = \measuredangle G(j\omega) = \tan^{-1}\left(-\frac{1}{0 \cdot \omega}\right) = -\frac{\pi}{2}
$$

• Differentiator

$$
G(s) = As \qquad G(j\omega) = jA\omega
$$

$$
AR_N = |G(j\omega)| = A\omega
$$

$$
\phi = \angle G(j\omega) = \tan^{-1}\left(\frac{1}{0 \cdot \omega}\right) = \frac{\pi}{2}
$$

• Pure delay process **AREA**

$$
\phi = \angle G(j\omega) = \tan^{-1}\left(-\frac{1}{0 \cdot \omega}\right) = -\frac{n}{2}
$$
\nDifferentiator\n
$$
G(s) = As \qquad G(j\omega) = jA\omega
$$
\n
$$
AR_N = |G(j\omega)| = A\omega
$$
\n
$$
\phi = \angle G(j\omega) = \tan^{-1}\left(\frac{1}{0 \cdot \omega}\right) = \frac{\pi}{2}
$$
\n
$$
P
$$
\n
$$
G(s) = e^{-\theta s}
$$
\n
$$
G(s) = e^{-\theta s}
$$
\n
$$
G(j\omega) = e^{-j\theta\omega} = \cos\theta \omega - j\sin\theta \omega
$$
\n
$$
AR = |G(j\omega)| = 1
$$
\n
$$
\phi = \angle G(j\omega) = -\tan^{-1}\tan\theta \omega = -\theta\omega
$$

SKETCHING BODE PLOT **SKETCHING BODE**
 $G(s) = \frac{G_a(s)G_b(s)G_c(s) \cdots}{G_1(s)G_2(s)G_3(s) \cdots}$ $G(j\omega) = \frac{G_a(j\omega)}{G_1(j\omega)}$
 $G(j\omega) = \frac{|G_a(j\omega)||G_b(j\omega)||G_c(j\omega)| \cdots}{|G_s(j\omega)||G_s(j\omega)||G_s(j\omega)| \cdots}$ **CHING BODE PLOT**

(s) ... $G(j\omega) = \frac{G_a(j\omega)G_b(j\omega)G_c(j\omega)\cdots}{G_1(j\omega)G_2(j\omega)G_3(j\omega)\cdots}$
 $(j\omega)||G_c(j\omega)|\cdots$ **SKETCHING BODE PLOT**
 $\frac{G_a(s)G_b(s)G_c(s)\cdots}{G_1(s)G_2(s)G_3(s)\cdots}$ $G(j\omega) = \frac{G_a(j\omega)G_b(j\omega)G_c(j\omega)\cdots}{G_1(j\omega)G_2(j\omega)G_3(j\omega)\cdots}$
 $= \frac{|G_a(j\omega)||G_b(j\omega)||G_c(j\omega)|\cdots}{|G_1(j\omega)||G_2(j\omega)||G_3(j\omega)|\cdots}$ **SKETCHING BODE P**
 $G(s) = \frac{G_a(s)G_b(s)G_c(s) \cdots}{G_1(s)G_2(s)G_3(s) \cdots}$ $G(j\omega) = \frac{G_a(j\omega)(G_1(s)G_2(s)G_3(s) \cdots)}{G_1(j\omega)(s)G_2(j\omega)(s)G_3(j\omega)}$
 $G(j\omega) = \frac{|G_a(j\omega)||G_b(j\omega)||G_c(j\omega)| \cdots}{|G_1(j\omega)||G_2(j\omega)||G_3(j\omega)| \cdots}$
 $G(j\omega) = 4G_a(j\omega) + 4G_b(j\omega) + 4G_c(j\$ **SKETCHING BODE PLOT**

(s) $G_b(s)G_c(s) \cdots$
 $G(c)G_2(s)G_3(s) \cdots$
 $G_a(j\omega) || G_b(j\omega) || G_c(j\omega) || \cdots$
 $G_a(j\omega) || G_2(j\omega) || G_3(j\omega) || \cdots$
 $G_4(j\omega) || G_2(j\omega) || G_3(j\omega) || \cdots$
 $G_4(j\omega) + 4G_b(j\omega) + 4G_c(j\omega) + \cdots$
 $-4G_1(j\omega) - 4G_2(j\omega) - 4G_3(j\omega) - \cdots$ **SKETCHING BODE PLOT**
 $G(s) = \frac{G_a(s)G_b(s)G_c(s) \cdots}{G_1(s)G_2(s)G_3(s) \cdots}$ $G(j\omega) = \frac{G_a(j\omega)G_b(j\omega)G_c(j\omega) \cdots}{G_1(j\omega)G_2(j\omega)G_3(j\omega) \cdots}$
 $G(\omega)| = \frac{|G_a(j\omega)||G_b(j\omega)||G_c(j\omega)| \cdots}{|G_1(j\omega)||G_2(j\omega)||G_3(j\omega)| \cdots}$
 $4G(j\omega) = 4G_a(j\omega) + 4G_b(j\omega) + 4G_c(j\omega$ **SKETCHING BODE PLOT**
 $G(s) = \frac{G_a(s)G_b(s)G_c(s) \cdots}{G_1(s)G_2(s)G_3(s) \cdots}$ $G(j\omega) = \frac{G_a(j\omega)G_b(j\omega)G_c(j\omega) \cdots}{G_1(j\omega)G_2(j\omega)G_3(j\omega) \cdots}$
 $G(j\omega) = \frac{|G_a(j\omega)||G_b(j\omega)||G_c(j\omega)| \cdots}{|G_1(j\omega)||G_2(j\omega)||G_3(j\omega)| \cdots}$
 $\star G(j\omega) = \star G_a(j\omega) + \star G_b(j\omega) + \star G_c(j$

$$
G(s) = \frac{G_a(s)G_b(s)G_c(s) \cdots}{G_1(s)G_2(s)G_3(s) \cdots} \qquad G(j\omega)
$$

ING BODE PLOT
\n
$$
G(j\omega) = \frac{G_a(j\omega)G_b(j\omega)G_c(j\omega)\cdots}{G_1(j\omega)G_2(j\omega)G_3(j\omega)\cdots}
$$
\n
$$
\frac{(j\omega)\cdots}{(j\omega)\cdots}
$$
\n
$$
y) + 4G_c(j\omega) + \cdots
$$
\n
$$
G_2(j\omega) - 4G_3(j\omega) - \cdots
$$

 $|G(j\omega)| = \frac{|G_a(j\omega)||G_b(j\omega)||G_c(j\omega)|}{|G_1(j\omega)||G_2(j\omega)||G_2(j\omega)|...}$

$$
\Delta G(j\omega) = \Delta G_a(j\omega) + \Delta G_b(j\omega) + \Delta G_c(j\omega) + \cdots
$$

$$
-\Delta G_1(j\omega) - \Delta G_2(j\omega) - \Delta G_3(j\omega) - \cdots
$$

• Bode diagram

- AR vs. frequency in log-log plot
- PA vs. frequency in semi-log plot
- Useful for
	- Analysis of the response characteristics
- Bode diagram

 AR vs. frequency in log-log plot

 PA vs. frequency in semi-log plot

 Useful for

 Analysis of the response characteristics

 Stability of the closed-loop system only for open-loop stable

systems wi • Stability of the closed-loop system only for open-loop stable systems with phase angle curves exhibit a single critical frequency.
- Amplitude Ratio on log-log plot
	- Start from steady-state gain at $\omega = 0$. If G_{OL} includes either
- Amplitude Ratio on log-log plot
 $-$ Start from steady-state gain at $\omega = 0$. If G_{OL} includes either

integrator or differentiator it starts at ∞ or 0.
 $-$ Each first-order lag (lead) adds to the slope –1 (+1) startin the corner frequency.
	- $-$ Each integrator (differentiator) adds to the slope -1 (+1) starting at zero frequency.
	- A delays does not contribute to the AR plot.

• Phase angle on semi-log plot

- Start from 0° or -180° at $\omega = 0$ depending on the sign of steadystate gain.
- Start from 0° or -180° at ω = 0 depending on the sign of steady-
state gain.
- Each first-order lag (lead) adds 0° to phase angle at ω = 0, adds
-90° (+90°) to phase angle at ω = ∞ , and adds -45° (+45°) to
 – Each first-order lag (lead) adds 0° to phase angle at $\omega = 0$, adds -90° (+90°) to phase angle at $\omega = \infty$, and adds -45° (+45°) to phase angle at corner frequency.
	- Each integrator (differentiator) adds -90 $^{\circ}$ (+90 $^{\circ}$) to the phase angle for all frequency.

– A delay adds $-\theta\omega$ to phase angle depending on the frequency.

Examples

3. PI:
$$
G(s) = K_c \left(1 + \frac{1}{\tau_I s} \right)
$$
 5. PID: $G(s) = K_c \left(1 + \frac{1}{\tau_I s} \right)$

$$
\frac{1}{\tau_{IS}} = \mathbf{5. PID: } G(s) = K_C \left(1 + \frac{1}{\tau_{IS}} + \tau_{DS} \right)
$$

$$
\omega_{Notch} = \frac{1}{\sqrt{\tau_I \tau_D}} \text{ at } \phi = 0^{\circ}
$$

4. PD: $G(s) = K_c(1 + \tau_{DS})$

NYQUIST DIAGRAM

- Alternative representation of frequency response
- Polar plot of $G(j\omega)$ (ω is implicit)

- Compact (one plot)
- Wider applicability of stability analysis than Bode plot
- High frequency characteristics will be shrunk near the origin.
	- Inverse Nyquist diagram: polar plot of $1/G(j\omega)$
- Wider applicability of stability

analysis than Bode plot

 High frequency characteristics will be

shrunk near the origin.

 Inverse Nyquist diagram: polar plot of $1/G(j\omega)$

 Combination of different transfer functi – Combination of different transfer function components is not easy as with Nyquist diagram as with Bode plot.

