Dept. of Chemical and Biological Engineering Chemical Process Control Korea University CBE302

Final Exam.

Closed Book Exam. (Submit the problem sheet with your answer sheets.) 2003. 12. 17

1.(30) (From the sample exam from the class homepage), For the following closed-loop system,

Also, find the value of K_{c2} that gives a 0.707 damping coefficient for the inner loop and find the range of K_{c1} that makes the whole system stable using Routh array with the calculated K_{c2} value.

- 2.(30) (Seborg et al., Ex. 12.1, p291)
 - A process has the transfer function G(s)=K/(10s+1)(5s+1) where *K* has a nominal value of one. PID controller settings are to be calculated using the Direct Synthesis approach with $\tau_c = 5$ min. Suppose that these controller constants are employed and that *K* changes unexpectedly from 1 to $1+\alpha$.
 - a) For what value of α will the closed-loop system be stable?
 - b) Suppose that the PID controller constants are calculated using the nominal value of K=1 but it is desired that the resulting closed-loop system be stable for $|\alpha| \le 0.2$. What is the smallest value of τ_c that can be used?
 - c) What conclusions can be made concerning the effect that the choice of τ_c has on the stability of the closed-loop system to changes in steady-state gain *K*?
- **3.**(30) For the first order plus time delay system, derive an IMC controller using a first-order Taylor series approximation for the time delay. Also, find the equivalent PID controller setting from the resulting IMC controller.
- **4.**(60) Answer true or false for each statement. *Each problem is worth* +5 *points when the answer is correct, but it costs* –5 *points if the answer is wrong.*
 - a) The 1/4 decay ratio is too oscillatory for chemical processes. Then the 1/5 decay ratio will be less oscillatory.
 - b) The reset time and the derivative time should increase for same stability margin as the ratio of time delay to dominant time constant increases. ()
 - c) In IMC design, the order parameter (*r*) of the IMC filter should be selected so that the order of numerator of G_c^* is same as the order of denominator. ()
 - d) Using direct synthesis, the resulting controller will be PID for SOPDT model with Taylor series approximation of the delay.
 - e) The relay feedback method requires to specify the size of input change and the desired time constant of closed-loop response. ()
 - f) The robustness can be defined as the ability of a controller that the control performance and stability can be adjusted automatically.
 - g) In closed-loop frequency response, reasonable resonance peak at relatively low frequency will help to shorten the rise time to set point.
 - h) From a simple Nyquist stability criterion, the diagram should encompass (-1,0) clockwise for stability.
 - i) Small gain and phase margin will result sluggish and oscillatory response.
 - j) In general stability sense, a process is stable as long as the step response in set point will not diverge.
 ()
 - k) For stability, the frequency gains of process TF at the critical frequency should be less than one.
 - I) Among IAE, ISE and ITAE for PID tuning, the ISE results most aggressive action.