
Guided Tutorial for Java Control Module VI 
 
Lesson 1: The poles of a transfer function indicate the dynamic behavior of the system. A 
system is stable if it has negative poles. 
 

1. The red circle represents location of poles of the system. For a system described 
by a transfer function 
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roots of the denominator a1, a2, …, an are known as poles of the transfer function. 
 
Start the Java applet VI. Currently the system has one pole at -1. The transfer 
function for this system is G(s)=1/(s+1). Step response of this system shows that 
the output response increases and finally settles at 1. This is a first order system 
with time constant τ=1. A system is stable if the poles of the transfer function 
are negative. 
 
 

Lesson 2: Closer the pole to zero, more sluggish is the response of the system 
 

2. Make sure that the radio button “Move Points” is clicked. Click on the radio 
button “Linear Move”. Now move the pole to the left to value -2. The transfer 
function of the system is G(s)=2/(s+2)= 1/(0.5s+1). Thus, the time constant of the 
system is τ=0.5. The system is still stable. The output goes to final value of 1 
faster, as the time constant is decreased.  

 
3. Now, move the pole to -0.5. Again, it’s a first order system with time constant τ=2. 

The step response gets sluggish. The system is stable because the pole is negative. 
As you move the pole closer to zero, the response gets sluggish.  

 
 

Lesson 3: Step response of system with poles at zero is a ramp function. Systems with a 
positive pole are “unstable.” 
 

4.  Move the pole location to 0. The transfer function is G(s)=1/s . Step response of 
the system is a ramp function.  

 
5. Move the pole location to 1. We now have a positive pole, which results in 

exponential growth with time. Positive pole results in an unstable system.  
 
 



Lesson 4: Complex roots for a system always exist as a complex conjugate pair. The real 
part of the complex root determines exponential growth or damping of the system, while the 
complex part results in sinusoidal response. 
 

6. Move the pole back to location -1. Click on the radio button “Circular move”. A 
black circle appears and the status bar mentions the time constant and damping 
factor. Move the pole around the circle to -0 5±j0.75. We now have two poles that 
are complex conjugates. The system shows slight oscillations. Negative real part 
of the root results in exponential decay in the amplitude of the sinusoid. 

 
7. Move the pole to the imaginary axis (pole location would be 0±j0.95 or 0±j0.9). 

The poles are now purely imaginary, which are marginally stable. The response of 
the system is oscillatory with constant amplitude. As the real part of the poles is 0, 
there is neither attenuation nor increase in the amplitude.  

 
8. Now move the poles to the right hand side of the Y-axis (usually referred to as 

“right half plane”). Place the poles at 0.25±j0.8. The response is sinusoidal with 
exponentially growing amplitude. As we move pole towards the real axis, the 
exponential increase becomes faster and faster and the oscillations become less 
and less.  

 
Thus, in general, a pole in right half plane results in an unstable system while a pole in left 
half plane represents a stable system. Pole(s) in right half plane and left half plane has 
positive real part and negative real part, respectively.  
 
 
Lesson 5: The response of a second order system can also be determined by its time 
constant and damping coefficient. Damping coefficient determines the general shape of the 
dynamic behavior, while time constant indicates the time scale of the response.  
 
We will repeat steps 6 and 7 above. First, bring the pole back to location -1. To do so, click 
on the radio button “Free Move”. Move the poles to location -1. The two poles should 
merge into a single pole.  
 

9. As in cases (6 and 7), click on “Circular move” and move the pole around the 
circle towards the imaginary axis (Y-axis). You will see that the damping 
coefficient decreases, and the response of the system becomes increasingly 
oscillatory.  

 
10. For poles located at -1, the system is critically damped. The damping factor ζ=1, 

and the system does not show oscillatory behavior. Thus, real repeated roots 
correspond to a critically damped system. 

 



11. The transfer function of the system in case (6), i.e. poles at -0.5±j0.75  is 
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The time constant is τ=1.109 and damping factor is ζ=0.555. The system is 
underdamped. Thus, complex roots correspond to an underdamped system.  

 
 
Lesson 6: Distinct real roots correspond to an overdamped system.  
 

12. Click on the “Free move” radio button. Move the pole back to -1. Now click on 
“Add pole” radio button. On the chart, click once near point (-2, 0) on the X axis. 
This will introduce a pole at -2. If the pole is not at -2, click on “Move points” 
radio button. With the “Free move” radio button still checked, move the pole to -2. 
This corresponds to an overdamped system, given by  
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Thus, we have a second order system with τ=0.707 and ζ=1.06. This is an 
overdamped system. 

 
 

Lesson 7: Right half plane zero results in an inverse response. An overshoot is observed if 
we have a left half plane zero that is closer to the origin than all the poles of the transfer 
function.  

 
13. At this point, we should have two poles, one at -1 and the other at -2. Let us now 

introduce a zero and see its effect on the dynamics of the system. Click on the 
radio button “Add zero.” Click on the chart at (1, 0) to introduce a zero at 1. The 
zero will be shown by a blue rectangle. We have introduced a zero in right half 
plane. The system shows inverse response, i.e. on introducing a positive step 
change, the output first decreases, and then increases to settle down at the steady 
state value of 1. Inverse response will be observed whenever we have a zero in 
right half plane.  

 
14. Now click on the radio button “Move points.” Click on the radio button “Linear 

move.” Move the zero to location -0.5. As the zero is now in the left half plane, 
we do not see inverse response as before. However, the system shows an 
overshoot. This is because the zero is closer to the Y-axis than any of the poles. 
This is usually true in simple cases.  



 
15. Move the zero to location -2.5. There is neither inverse response nor an overshoot 

observed.  
 
You can now play with this module by introducing more poles and zeros (number of zeros 
should not exceed the number of poles), moving them around and seeing the response of 
higher order systems with various pole-zero locations. 
 


