

Engineering aspect of emulsion polymerization

Joong-In Kim Bayer Corp., Plastics, Technology

Oct. 5th, 2000

Emulsion Short CourseYonsei University

Contents

- \bullet Free radical polymerization kinetics
- \bullet Emulsion polymerization
- \bullet Reactor configuration
- •Structured particles-Grafting process
- •Process modeling

Free radical polymerization

Inhibitions of Polymerization

Rate of Polymerization Diffusion **Steady state process** Limited Conversion Monomer $(Ri = Rt; M \cdot is constant)$ Limited 1/2 $\rm{f\,k_{d}$ [I] Gel $R_p = k_p M$ Region $\rm k_{t}$ Steady State Induction period Time

Copolymerization

Copolymer composition; controlled by

Ratio of monomers in feed Relative reactivity of monomers

Reactivity ratios

For monomers M_1 and M_2

$$
r_1 = k_{11}/k_{12} \qquad \qquad \sim M_1 \cdot + M_1 \xrightarrow{k_{11}} \qquad \qquad \sim M_1 M_1 \cdot
$$

$$
\sim M_1 \cdot + M_2 \xrightarrow{k_{12}} \qquad \sim M_1 M_2 \cdot
$$

$$
r_2 = k_{22}/k_{21} \qquad \qquad \sim M_2 \cdot + M_2 \xrightarrow{k_{22}} \qquad \sim M_2 M_2 \cdot
$$

$$
\sim M_2 \cdot + M_1 \xrightarrow{k_{21}} \qquad \sim M_2 M_1 \cdot
$$

Emulsion polymerization: *Partition coefficient*

Copolymer composition

rAfA2 + fAfBrAfA2 + 2 fAfB + rBfB2 FA ⁼ rBfB2 + fAfBrAfA2 + 2 fAfB + rBfB2 FB⁼

Kinetic Chain Length

ν **: Average number of monomer molecules polymerized**

$$
v = \frac{R_p}{R_i} = \frac{R_p}{R_i}
$$

= $\left(\frac{k_p^2}{2k_t}\right) \frac{[M]^2}{R_p} = \left(\frac{k_p}{2f k_d k_t}\right) \frac{[M]}{[I]^{1/2}}$
Increasing monomer feed rate

Increased initiator **Decreased MW** Increased temperature Decreased MW

Chain transfer agent

Batch Emulsion Polymerization Kinetics

D. Lee, Makromol. Chem., Makromol. Symp., 33, 117 (1990)

S-E Phase I

- •Surfactant in form or micelles swollen with monomer
- \bullet Radicals form water soluble initiator captured by very small micelles, and polymerization begins by forming particles
- By end of phase 1, all particles are formed. There is no excess surfactant.

 $N \propto$ (**C**s as)^{0.6} (ρ / μ)^{0.4}

- **C**s : Concentration of surfactant
- **a**: Area of surfactant molecule
- ρ : Rate of radical generation
- µ: rate of particle growth

Particle formation during interval I

R. Gilbert, in Emulsion polymerization and emulsion polymer edited by P. Lovel and M. El-Aasser, 1997

S-E Phase II

No new particles are formed.

- • Each particle contains 0 or 1 radical due to fast termination in a small particle.
- As particles grow, the amount of emulsifier available to stabilize the particle surface area is reducing.

 $R_p = k_p (N/2) [M]$

- R_p : Rate of polymerization per ml of water
- k_p : propagation constant
- Ν: Number of particle per ml of water
- M: Concentration of monomer in particles

S-E Phase II

 $M_n \propto \frac{\text{Rate of polymerization}}{}$ Rate of radical capture = $=\frac{k_{p} [M]}{(\rho/N)}$ $\alpha = \frac{\rho c}{\rho_0} = k_p N [M] / \rho$

- \bullet Added soap must not exceed surface coverage, or new particles will form.
- \bullet The smaller particles have greater surface area and compete at the expense of larger particles.
- \bullet [M] is controlled by:

Monomer add rate and limited swelling of particles

Rate of polymerization vs Molecular weight

 R_p depends on N and M, but not on the rate of radical generation during the steady-state period.

$$
R_p = k_p (N/2) [M]
$$

$$
M_n = 2 R_p / \rho
$$

High molecular weight polymers can be obtained without hurting reaction rate by the combination of *large N and small* ρ.

S-E Phase III

- • During Phase III, the batch is finished off.
	- \bullet Crosslinking increases dramatically during final conversion

n calculation ¯

- \bullet Calculation of live radicals in particle phase
- \bullet Stationary state distribution of radicals

absorption

- = initiator decomposition
- + desorption termination

J. Ugelstadt et al., J. Polym Sci., 5, 2281 (1967)

Reactor classifications

- \bullet Batch process
	- Adding all ingredients to the reactor
	- Batch to batch variability during interval I
		- Seeded polymerization
	- Composition drift
	- Monomer partitioning (solubility difference)
	- Heat transfer requirement
- • Semi-continuous process
	- Controlled introduction of monomers
	- Optimum monomer addition profile for composition control
- \bullet Continuous process
	- CSTR vs Tubular reactor
	- Single vs multiple reactors

Advantages: Semi continuous process

- Reaction temperature
	- Controlled by monomer feed rate
- • Copolymer composition
	- Monomer feed control
- Particle concentration
	- Seed latex
	- Controlled feeding of emulsifiers, initiators, and monomers
- Particle size distribution
	- Controlled feeding of emulsifiers and monomers
- \bullet Structured particle
	- Easier to control morphology

Structured latex particles - Grafting

Tailored structure for desired final physical properties

Thermodynamic and kinetic process parameters polymer/water interfacial tension core polymer particle size and size distribution particle surface polarity surfactant type and level initiator type and level chain transfer agent monomer to polymer ratio reaction temperature crosslinking

Parameter - Structure - Property

Kinetic Parameter Controls

D.I. Lee, ACS Symp. Ser., 165, 405 (1981)

Defining grafting parameters

Experimental design:

Plackett-Burman screening design

(n+1 experiments for n variables)

Factorial or partial factorial design

Grafting

Molecular weight of Graft chain

Graft efficiency = Wt of grafted polymer/Wt of total polymer formed

Graft MW vs Graft sites

At the same Graft level

Effect of Chain Transfer Agent on Grafting

D. Sundberg, Annual EPI Short Course, Lehigh Univ., (1986)

Effect of Reaction Temp on Grafting

D.C. Sundberg, Annual EPI Short Course, Lehigh Univ., (1986)

Structure - Thermodynamic consideration

Y. Chen, Macromolecules, 24, 3779 (1991)

Structure - Thermodynamic consideration

interfacial tensions. By selecting a set of interfacial tensions $(y_{P_2/w} - y_{P_1/W})$ and y_{P_1/P_2} and selecting the line relevant to the seed particle diameter (D) , the stage ratio (S) , and the crosslinking density $(X = M_c/M)$, one can determine the most stable morphology of such a system.

Structure - Kinetic consideration

D. Sundberg, Macromolecules, 29, 8466 (1996)

TEM pictures of the graft latexes

Core/shell Hemisphere Occlusions

SEM pictures of the graft latexes

Graft shell

Process Modeling

- Polyred / Hysis Wisconsin
- *Polymer plus - Aspen*
- •In house programs

Mathematics

Emulsion Short Course

Objectives

- Calculation of kinetics and molecular properties from the recipe without doing experiments
	- Conversion curve
	- Particle nucleation and growth
	- Particle size and size distribution
	- Polymer composition profile
	- Heat generation
	- Molecular weight, means, and distribution

What's good for?

- \bullet Simulation doesn't cost much.
	- Better understanding of polymerization by elucidation of mechanisms
	- Better planning and analysis of experiments
	- Straight forward and a easy way to adjust molecular properties
	- Can predict the properties by changing the recipes