국내고유 철광석계 탈황제 개발

김 희 택

한양대학교 화학공학과

2001년 3월 2일

Advanced hot-gas process(AHGP)

Schematic of AHGP desulfurization and regeneration reactors

Schematic of AHGP desulfurization and regeneration reactors.

J.D. White, F.R. Groves Jr., D.P. Harrison, *Elemental sulfur production during the regeneration* of iron oxide high-temp. desulfurization sorbent", Catalysis Today **40** 47-57 (1998).

Sulfidation

```
Fe_2O_3 + 2H_2S + H_2 \rightarrow 2FeS + 3H_2O
```

Regeneration (steam-oxygen mixture) $2FeS + 7/2 O_2 \rightarrow Fe_2O_3 + 2SO_2$ (very fast) $3FeS + 4H_2O \rightarrow Fe_3O_4 + 3H_2O + H_2$ $SO_2 + 2H_2S \rightarrow 2H_2O + 3/2 S_2$ $2Fe_3O_4 + 1/2 O_2 \rightarrow 3Fe_2O_3$ Sulfidation (Desulfurization Reactor) $Fe_2O_3 + 2H_2S + H_2 \rightarrow 2FeS + 3H_2O$ $ZnO + H_2S \rightarrow ZnS + H_2O$

SO₂ Regeneration (Regenerator-Stage1) $4FeS + 3SO_2 \rightarrow 2Fe_2O_3 + 7/2S_2$

 O_2 Regeneration (Regenerator-Stage2) $2FeS + 7/2 O_2 \rightarrow Fe_2O_3 + 2SO_2$ $ZnS + 3/2 O_2 \rightarrow ZnO + SO_2$ Direct Sulfur Recovery Process(DSRP) (Dorchak et al., 1991; Portzer & Gangwal, 1995)

$SO_2 + 2H_2 (or 2CO) \rightarrow 2H_2O (or 2CO_2) + 1/n S_n$

Using coal gas slipstream as reducing gas

Process Schematic of the 4t/d Moving Bed Hot Gas Cleanup Test Plant Kawasaki Heavy Industries(KHI), LTD

Major results obtained from bench-scale fixedbed experiments for HTW-based IGCC power plant (Rheinbraun AG, Germany)

Sorbent	Absorption Temperature []	Regeneration Temperature []	Sorbent Utilization [%]	H ₂ S Outlet Content [ppmv]	Major Finding
Iron(pellets)	600	600	~15	~100	reactions only on outer surface no degradation
Iron Oxide	360-400	360-400	25-45	<50	low sulphur capacity sulphate formation no degradation
Copper Oxide	550	650	~70	<20	dust formation sulphate formation no degradation
Zinc Ferrite	450-550	600	20-65	<20	severe degradation sulphate formation sulphur formation
Zinc Titanate	450-600	600	40-60	<10	severe degradation sulphate formation sulphur formation
Tin Dioxide	450	500	<85	<100	coarse H ₂ S removal no degradation high chemical stability
Zinc Oxide	450	500	not determined	<1	polishing step no degradation high chemical stability

The Record of Desulfurization and Dust Removal Performance of the 4t/d Moving Bed Hot Gas Cleanup Test Plant

coal	sulfur		dust particulate				
	inlet (ppmV)	outlet (ppmV)	removal efficiency(%)	inlet (mg/m ³ _N)	outlet (mg/m ³ _N)	removal efficiency(%)	operation hour
Taiheiyo	150-300	18-87	53.6-95.8	100-450	< 4	96.0-99.8	411
Moura	500-750	12-90	86.3-98.0	150-500	< 2	98.7-99.8	1004
Moura (sulfur added)	900- 1350	17-77	92.9-98.7	250-500	< 2	98.7-99.8	174
Warkworth	520-700	19-52	90.3-97.3	200-550	< 1	>99.5	114

철광석계 고온건식 탈황제 개발현황

		()	(atm)	フト (Nm³/h)	()
Appleby- Frodingham	Fe ₂ O ₃	350~420	1	110,000	593~816
Babcock-Wilcox	FeO	427~649		170	538~649
Battelle Columbus	Fe ₂ O ₃	538~816	1	0.06	593
IMMR	Fe ₂ O ₃ (7))	371~816	4~9	1	427~649
IHI	Fe ₂ O ₃	460~550	1~9	10~50	550~800
METC	Fe ₂ O ₃	538~816	1~20	212	538~816

Reduction

 $3Fe_2O_3 + H_2(or CO) \rightarrow 2Fe_3O_4 + H_2O(or CO_2)$

Sulfidation

 $Fe_3O_4 + 3H_2S + H_2(or CO) \rightarrow 3FeS + 4H_2O(or 3H_2O + CO_2)$

Regeneration

 $2\text{FeS} + 3.5\text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + 2\text{SO}_2$

COS conversion

 $COS + H_2 \rightarrow H_2S + CO$

Sulfate formation ($< 400 \degree$ C)

 $2\text{FeS} + 5\text{O}_2 + \text{SO}_2 \rightarrow \text{Fe}_2(\text{SO}_4)_3$

Cost Comparision : Waste Metal Oxide Sorbent

Sorbent	SO ₂ *	H ₂ S*
Iron oxide	137.79	388.70
Zinc oxide	13.84	65.14
Tin oxide	7.21	2.09

(*) in grams of S removed / dollar value of pure metal

철광석계 탈황제 특징

- 중온영역(350~550℃)에 가장 적합 탈황능력 및 반응성 입증
- 저온재생 및 황산염 생성 제어 가능
- 직접황회수 가능
 - Jeffrey W.Portzer et al., 1997 (RTI) D.P.Harrison et al., 1999 (LSU)
- 가장 저렴한 원료이며 구입이 용이

철광석:\$1.14/lb, Zinc titanate:>\$3.8/lb Z-sorbIII:>\$ 7.3/lb

• 특허제약 거의 없음

ZnFe₂O₄에 집중. 기타는 초보적 단계의 재질특허

Hot-gas Desulfurization with DSRP

Hot-gas desulfurization with DSRP.

.