크롬계 가스화기 내화물의 부식에 의한 미세구조 및 성분변화

<u>김한봄</u>, 박윤경, 정석우^{*}, 오명숙, 홍익대학교 공과대학 화학공학과 고등기술연구원 Plant Engineering 센터^{*}

Changes in the Microstructure and Composition of the Chromia Coal Gasifier Refractory by Corrosion

H. B. Kim, Y. K. Park, S. W. Jung^{*}, M. S. Oh Department of Chemical Engineering, Hong-Ik University Plant Engineering Center, Institute for Advanced Engineering^{*}

1. 서 론

1990년대에 이르러 안정적인 에너지원의 공급과 환경문제에 대한 관심이 대두되면서, 공해 문제를 해소하고, 기존의 석탄 발전소보다 20~30% 높은 효율의 복합 가스화발전이 연구 되고 있다.^[1] 복합 가스화발전에 보편적으로 쓰이는 가스화기 반응기 내부는 가스화기의 Shell을 보호하고 에너지손실을 줄여 열효율을 높이기 위해 주로 내화물로 구성되어 있다. 내화물과 슬래그와의 침식반응은 가스화기의 내부수명 및 내화물 교체시기에 영향을 미치는 중요한 변수이다. 특히 기계적 강도가 높고 온도의 급변화 및 접촉되는 기체, 용융체, 고체 등의 침식, 충격, 마모 등에 저항성이 크고 열팽창과 열전도율이 작을 것이 요구된다.^{[2][3]} 본 논문에서는 여러 종류의 석탄을 주입하여 1000시간 이상 운전한 고등기술원의 컨식가스화기 내화물 샘플을 SEM/EDX, XRD, XRF 분석을 통해 슬래그와 내화물의 침식반응 결과를 요 약한다.

2. 고등기술원 가스화기 Refractory corrosion 분석 실험

대우 고등기술원(IAE) 건식 가스화기 반응기 내부는 그림 2.1에 보여진 바와 같이 3종류의 내화물로 구성되어 있다. 그림 2.1의 가스화 반응기에서 가장 안쪽에 위치한 Hard Face 내 화물을 채취하여 슬래그 접촉면에서 안쪽으로 수직 절단하였다. A부터 D까지 4개의 석탄주 입노즐은 90°를 이루며 설치되어 있으며 샘플은 A하단-50cm, B하단-40cm, D하단-35, 40, 50cm, 슬래그 Tap에서 모두 6개의 샘플이 채취되었다. 본 논문에서는 D-35, D-40, D-50 샘플에서 채취한 시료를 1cm 간격으로 절단하여 XRD 결정분석, XRF 성분분석을 수행하였 고, SEM에 의한 미세구조분석을 통하여 슬래그에 대한 내화물 침식 및 반응을 조사하였다.

3. 결과 및 고찰

3.1 사용전 크롬계 내화물 샘플의 미세구조

Figure 2.1 Inside structure of IAE gasifier

사용전의 내화물 샘플을 가지고 소성 표면에서 안쪽으로 이동하면서 SEM/EDX 분석을 수 행하였다. 그림 3.1-(a)는 대표적인 순수한 내화물의 미세구조 영역으로 크게 3가지 영역으 로 구분되어 있다. 첫째로 상단부분의 Zr-rich (A영역)로 ZrO₂ 형태로 존재하고, 둘째로 기 공이 없고 치밀하게 소성된 Cr 결정들과(B부분) 작은 Cr 입자들(C부분)이 Cr₂O₃ 형태로 존 재한다. 마지막으로 A영역에 존재하는 ZrO₂ 결정사이에 Si는 Al과 함께 silicate로, Al은 Cr-Al oxides 혹은 silicate 형태로 어두운 바닥 배경면에 존재함이 관찰되었다. 그림 3.1-(b)그림은 매우 커다란 Zr이 많이 관찰되는 영역으로 작은 Cr 결정도 소량 존재하였고 (c)는 Cr 결정이 존재하는 영역으로 세부적으로는 치밀하고 큰 입자의 Cr 결정(A부분)과 기공이 많고 작은 결정(B부분)으로 구분되어 있다. 이 결과는 평면의 Cr 결정 및 과립상의 Cr 결정, 유리상을 포함한 둥근 과립형의 Zr 입자들이 혼재되어 있다고 Zong-Qi Guo 등이 발표한 결과와 유사하다.^[4]

기타 다른 영역에서도 그림3.1에서 보여진 여러 형태의 미세구조가 불균일하게 혼재되어 있음이 관찰되었다. 각각의 영역에서 1mm당 EDX 성분분석을 한 결과로 평균적으로 Cr₂O₃ 48.83%, ZrO₂ 22.66%, Al₂O₃ 14.13%, SiO₂ 12.19%로 구성되어 있었다.

Figure 3.1 SEM micrographs of 3-6mm Chromia Refractory sample

3.2 침식된 내화물 시료 D하단 샘플

D-35, D-40, D-50 샘플의 전체 길이는 각각 3.5cm, 9cm, 8cm 정도이었다. 슬래그가 닿 은 부식면에서 안쪽 내화물 방향으로 1mm 또는 2mm 간격으로 SEM/EDX 분석을 수행하 였다. 그림 3.2-(a)는 D-35 시료로 슬래그와 접촉하는 슬래그 부식면의 그림이다. A영역에 서는 작고 깨져 있는 Cr-Fe 입자와 어두운 바닥면에 Ca-Al-Si의 silicate상이 확인되었다. B영역은 Cr-Fe 입자가 밀집되어 있음이 관찰되었다. (b)는 A영역의 작게 깨져 있는 Cr-Fe 입자를 확대한 그림으로 EDX 분석결과 사각형 형태의 결정은 Cr-Fe 입자, 어두운 바닥면 은 Ca-Al-Si의 Silicates상이었으며 가늘고 침상의 결정은 주성분은 Si-Fe-Al 이었고, 6.12%의 Mg가 포함되어 있었다. 이는 슬래그의 침식으로 인하여 생긴 silicate상과 Mg을 포함한 Spinel 결정이 생긴 것으로 보인다. 다른 D-40, D-50 시료에서도 동일한 Cr-Fe 입 자가 슬래그 부식면에서 관찰되었다. 이를 통해 첫 번째로 슬래그의 Fe과 내화물의 Cr이 반 응하여 Cr-Fe 입자를 형성함을 알 수 있었다.

(a) Slag side region (b) Magnified A

Figure 3.2 SEM micrographs of the Slag side of D-35 refractory sample

그림 3.3-(a)는 D-40 시료로 슬래그 부식면에서 내화물 안쪽으로 2-3mm 영역의 SEM 사 진이다. 아랫부분의 슬래그의 침식으로 인한 Cr-Fe 입자(A영역)가 존재하고 A영역에서 B 영역으로 갈수록 Fe의 함량이 줄어듦을 EDX 결과 확인되었다. 또한 상단부근에서 슬래그 침식으로 인한 Cr-Al 입자(B영역)가 존재하였다. 즉 슬래그의 침식으로 인하여 처음에는 슬 래그의 Fe와 내화물의 Cr이 반응하여 Cr-Fe 결정이 형성되고, 그 다음으로 Al과 반응하여 Cr-Al 결정이 생긴 것으로 보인다. (b)는 Cr-Fe 입자를 확대한 그림이고 (c)는 슬래그 침식 으로 인한 Cr-Al 입자를 확대한 사진이다. (c)그림의 커다란 Cr 입자에서 입자 가장자리로 갈수록 Al의 함량이 높아지고 또한 작은 입자일수록 상대적으로 Al 함량이 높음이 EDX 결 과 확인되었다.

그림 3.4는 D-35, D-40, D-50 각각의 시료에서 침식된 영역의 SEM 사진이다. (a)는 D-35 시료로 작은 입자의 Cr-Al 결정과 바닥의 silicate상이 관찰되었으며 약 3cm까지 슬래그에 의한 침식이 일어났다. (b)는 D-40 시료의 32-33mm 영역으로 슬래그 침식을 받지 않은 Cr 입자(A영역)와 하단부근에 슬래그 침식으로 인한 Cr-Al 입자가 관찰되었다. 따라서 슬래그 침식은 약 3-4cm 지점까지 일어난 것으로 보인다. (c)그림은 D-50 시료의 52-54mm 영역 으로 하단의 A지점은 침식의 영향을 받지 않은 Cr 입자가, 어두운 B지점은 Ca을 포함한 silicate상이, C지점은 작은 Cr-Al 입자가 관찰되었으며 약 5-6cm 지점까지 침식이 일어난 것으로 보인다.

Figure 3.3 SEM micrographs of 2-3mm region of D-40 refractory sample

(a) 27–29mm in D–35 (b) 32–33mm in D–40 (b) 52–54mm in D–50

Figure 3.4 SEM micrographs of D sample

그림 3.5는 각각의 시료에서 슬래그와 접촉하는 0-1cm 영역의 XRD 결정분석 결과로, (a) 의 D-35 및 (b)의 D-40 시료의 슬래그 부식면에서 magnetite(FeCr₂O₄)결정과 슬래그 침투 로 인한 anorthite(CaAl₂Si₂O₈) 결정이 관찰되었다. 이는 슬래그의 Fe과 내화물의 Cr과 반응 하여 결정이 형성되었음을 입증한다. 반면에 (c)그림의 D-50 시료는 anorthite(CaAl₂Si₂O₈) 결정만이 확인되었는데 이는 XRF 성분분석 결과로 분석하여 볼 때 Fe의 함량이 1.49%로 적게 포함되어 있어 XRD 결정 peak으로 검출되지 않은 것으로 보인다. 또한 D-35 시료에 서는 약 2-3cm 영역까지 anorthite(CaAl₂Si₂O₈) 결정이 나타났으며, D-40 및 D-50 시료는 3-4cm 영역까지 anorthite(CaAl₂Si₂O₈) 결정이 나타났다. 이를 통해 내화물의 기공을 통해 슬래그 침투에 의한 anorthite(CaAl₂Si₂O₈) peak이 약 3-4cm영역까지 나타남을 알 수 있었 다.

표 3.3과 그림 3.6은 D-40 시료의 XRF 분석에 의한 성분으로 0-1cm 영역에서 Fe₂O₃의 함량이 7.53%이었다가 1-2cm에서는 1.10%로 급격히 줄어들며 CaO 함량은 3-4cm 영역까 지 약 3%로 나타났다. 이를 통해 첫 1cm 시료에서만 높은 Fe 농도를 갖고 있고 이 후 거 의 낮은 농도를 보여준다. 또한 Silicate 상을 나타내 주는 Si와 Ca 농도는 깊이에 따라 감 소함을 알 수 있었다. 이 결과는 FeO 함량에 의한 침식이 CaO에 의한 침식보다 더 심각하 다고 발표한 연구보고서의 결과와 유사하다.^[5] 따라서 D-40 시료는 약 3-4cm 영역까지 침 식당했다고 여겨진다.

(c) 0-1cm region of D-50

Figure 3.5 XRD data of Refractory D sample

Table 2	3.1	Compos	ition c	changes	in	D-40	Refractory
---------	-----	--------	---------	---------	----	------	------------

Depth	SiO ₂	Al2O ₃	Fe ₂ O ₃	CaO	Cr ₂ O ₃	ZrO_2	MgO	MnO	Na ₂ O	K ₂ O	TiO ₂
0-1	13.65	18.69	7.53	3.48	47.96	4.71	2.32	0.09	0.63	0.20	0.74
1-2	10.85	22.10	1.10	2.97	52.04	8.46	0.36	0.06	1.02	0.19	0.85
2-3	12.11	24.02	0.84	3.22	48.46	8.56	0.44	0.06	1.34	0.13	0.82
3-4	9.14	24.08	0.76	2.80	52.31	8.66	0.33	0.06	0.91	0.03	0.92
4-5	7.92	24.80	0.71	2.23	51.77	10.16	0.37	0.06	1.12	0.02	0.85
5-6	8.45	25.03	0.79	2.04	49.42	11.92	0.34	0.06	1.11	0.03	0.80
6-7	8.07	24.91	0.75	2.06	51.83	10.36	0.30	0.05	0.81	0.03	0.83
7-8	9.39	27.45	0.86	2.19	46.26	11.60	0.36	0.06	1.09	0.04	0.71
8-9	8.10	24.10	0.71	2.08	51.85	11.04	0.34	0.06	0.86	0.04	0.83
9-10	7.37	24.64	0.75	2.24	52.42	10.41	0.35	0.05	0.91	0.03	0.84
Unused	8.31	24.61	0.72	1.79	52.73	9.42	0.32	0.07	1.00	0.03	1.00

Figure 3.6 Compositions Distribution of D-40 Refractory

4. 결 론

고등기술원의 건식가스화기 반응기 내부에 사용중인 Cr₂O₃-Al₂O₃-ZrO₂ 내화물의 미세구조 분석결과, 침식은 슬래그의 Fe와 Al이 내화물의 Cr과 반응하여 일어난 것으로 보인다. 우선 슬래그 Fe가 내화물의 Cr₂O₃과 반응하여 FeCr₂O₄ 입자를 형성한다. 이 후 슬래그의 Al과 Cr₂O₃ 과 반응하며 커다란 Cr₂O₃ 입자의 가장자리로 갈수록 Al 함량이 높아진다. 또한 입자 크기가 작을수록 Al의 함량이 높다. 슬래그의 침투로 인한 Ca을 포함한 Silicates상이 관찰 되었다. 침식의 성향은 대체로 작은 Cr₂O₃ 입자, Zr-rich 입자가 존재하는 영역, 치밀하고 커 다란 Cr₂O₃ 입자 순서로 침식이 잘 일어남을 알 수 있었으며 시료 위치에 따른 영향은 관찰 되지 않았다. XRD 분석결과 첫 1cm 시료에서만 magnetite(FeCr₂O₄) 결정 peak이 검출되었 으며, 3-4cm 영역의 깊이에서는 슬래그 침투로 인한 anorthite(CaAl₂Si₂O₈) peak이 검출되 었다. 반면에 Cr-Al 화합물을 나타내는 peak은 찾지 못하였다. XRF/EDX 분석결과 첫 1cm 이내 시료에서 가장 높은 Fe 농도를 갖고 있었고 그 이후는 거의 낮은 농도를 보여 주었다. 또한 안쪽 깊이로 갈수록 Si와 Ca의 농도는 감소하였다. 반면에 Al은 특별한 경향을 볼 수 없었다.

5. 참고문헌

- 1. 김상돈, 석탄에너지 변환기술, 197-156
- 2. 이종근 외 "무기재료공업개론" 반도출판사 p83-95, 1994
- 3. John P. Hurley and Jan W.Nowok "Conditions for the Corrosions of Ceramics in Coal Gasification Systems"
- Zong-Qi Guo, Bo-Qi Han & Hai Dong "Effect of Coal Slag on the Wear Rate and Microstructure of the ZrO₂-baring Chromia Refractories" Ceramics International 23 489-496(1993)
- 5. 정선광 외 "COREX 용융가스화로의 출선구 주변 내화물 침식에 관한 연구", 포항산업 과학연구원 RIST 연구논문 제12권 제3호(1998)