Measurements and Predictions of Phase Equilibria for Water + Ethane in Hydrate-Forming Conditions

Y. S. Kim¹, S. O. Yang¹, S. S. Kim², C. S. Lee¹

- 1) Chemical and Biological Engineering, Korea University
- 2) Environment Technology Department, Suwon Science College

Introduction

- Gas Hydrate (Clathrate Hydrate)
 - a solid solution of water and light gases through hydrogen bonding
- Researches on the gas hydrate

- Methane hydrates as a future resource of energy
- Carbon dioxide sequestration as hydrates in deep ocean
- Process problems in petroleum industry
 - Effects of inhibitors on hydrate-forming condition
 - Prediction of phase equilibria for mixed hydrates

What are gas hydrates ?

- Crystalline solids consisting of a guest(s) component(s) and water
- Hydrates can form at conditions above the normal freezing point of water by the hydorogen bonding.
- Three cavities in gas hydrates

(a) Pentagonal Dodecahedron(5¹²) (b)Tetrakaidecahedron(5¹²6²) (c)Hexakaidecahedron(5¹²6⁴) (Reproduced from "*Clathrate Hydrates of Natural Gases*", Sloan, 1998)

• Structures of gas hydrates

- Structure I(a) and II(b) form with relatively small guests, e.q., methane, ethane, nitrogene, etc.
- Structure I and II contains 48 and 136 water molecules, respectively.
- Structure H(c) is only known to form with at least one small guest (i.e., methane) and one large guest, e.q., cyclooctane, methylcylcohexane, etc.

Studies on Ethane Hydrate

Figure 1. Phase diagram of H₂O - C₂H₆

Thermodynamics & Properties Lab.

Models on Gas Hydrate

• Van der Waals and Platteeuw [1959]

 Statistical model of hydrate cavities similar to gas adsorption model by Langmuir

- Holder et al.[1980]
 - The chemical potential difference between the hypothetical empty hydrate and the fluid phase or ice is calculated by classical thermodynamic relations
- Klauda and Sandler(2000)
 - Fitting the vapor pressure of the empty hydrate for each guest component

Purpose

- Experimental determination of H-L_W equilibria
 - Effect on ethane solubility by existence of NaCl
- EOS approach available on
 - ♦ three-phase equilibria (H-I-V_{C2H6}, H-L_W-V_{C2H6}, H-L_W-L_{C2H6})
 - two-phase equilibria (H-L_W, H-L/V_{C2H6})
- Applicability of Nonramdom Lattice Fluid Thoery (NLF-HB) and Gibbs energy model on hydrate containing equilibria

NLF-HB Equation of State

Nonrandom Lattice Fluid Hydrogen Bonding Theory

- NLF EOS by You et al. [1993 a, b]
- Expansion to associating system using Veytsman statistics[1990] by Yeom et al. [1999]
- ◆ A normalization of Veytsman statistics by Lee et al. [2000]
- Parameters for pure species

 $\varepsilon_{ii} / k = \varepsilon_a + \varepsilon_b (T - 273.15) + \varepsilon_c [T \ln(273.15/T) + (T - 273.15)]$

 $r_i = r_a + r_b(T - 273.15) + r_c[T \ln(273.15/T) + (T - 273.15)]$

Hydrogen-bonding energy and entropy for H₂O-H₂O interaction

 *E*_{HB}⁰ = −15.5 kJ/mol, S_{HB}⁰ = −16.5 J/mol-K by Luck [1980]

NLF-HB Equation of State

• Expression for Pressure

$$P = \frac{1}{\beta V_{H}} \left\{ \left(\frac{z}{2}\right) ln \left[1 + \left(\frac{q_{M}}{r_{M}} - 1\right) \rho \right] - ln(1 - \rho) - v_{HB} \rho \right\} - \left(\frac{z}{2}\right) \theta^{2} \left(\frac{\varepsilon_{M}}{V_{H}}\right) \right\}$$

$$\varepsilon_{M} = (1/\theta^{2}) \sum \sum \theta_{i} \theta_{j} \varepsilon_{ij} + (\beta/2\theta^{2}) \sum \sum \sum \lambda \theta_{i} \theta_{j} \theta_{k} \theta_{i} \varepsilon_{ij} (\varepsilon_{ij} + \varepsilon_{kl} - \varepsilon_{ik} - \varepsilon_{jk})$$

$$\rho_{i} = N_{i} r_{i} / (N_{0} + \sum_{i=1}^{C} N_{i} r_{i}) \qquad \theta_{i} = N_{i} q_{i} / (N_{0} + \sum_{i=1}^{C} N_{i} q_{i})$$

$$v_{HB} = \left(\sum_{k=1}^{K} \sum_{l=1}^{L} N_{kl}^{HB} - \sum_{k=1}^{K} \sum_{l=1}^{L} N_{kl}^{HB0}\right) / \sum_{i=1}^{C} N_{i} r_{i}$$

• Expression for chemical potential $\frac{\mu_i^{\Pi} - \mu_i^{\Pi 0}}{RT} = -\ln\left(\frac{V_H}{RT}\right) + r_i \ln\left[1 + \left(\frac{q_M}{r_M} - 1\right)\rho\right] - r_i \ln(1 - \rho) + \ln\left(\frac{\theta_i}{q_i}\right) + \left(\frac{z\beta q_i \varepsilon_M \theta^2}{2}\right) \\
\times \left[1 - \frac{r_i}{q_i} - \frac{2\sum \theta_k \varepsilon_{ik} + \beta\sum \sum \theta_j \theta_k \theta_l \varepsilon_{ij}(\varepsilon_{ij} + 2\varepsilon_{kl} - 2\varepsilon_{jk} - \varepsilon_{ik})}{\varepsilon_M \theta^2}\right] + \sum_{k=1}^m d_k^i \ln \frac{N_{k0}^{HB}}{N_{k0}^{HB0}} + \sum_{k=1}^n a_k^i \ln \frac{N_{0k}^{HB}}{N_{0k}^{HB0}}$

Thermodynamics & Properties Lab.

Thermodynamic Model for Hydrate Phase Equilibria

- Hydrate phase by van der Waals and Platteeuw model(1959) $\mu_{W}^{H} = \mu_{W}^{EH} + RT \sum_{j} v_{j} ln[1 - C_{i,j} f_{i}^{\Pi} / (1 + C_{i,j} f_{i}^{\Pi})]$ $f_{i}^{\Pi} = P^{0} exp[(\mu_{i}^{\Pi} - \mu_{i}^{\Pi 0}) / RT]$ $C_{ki} = \frac{4\pi}{kT} \int_{0}^{R} exp\left(-\frac{W(r)}{kT}\right) r^{2} dr$
- Chemical potential difference between empty hydrate and reference fluid state

$$\mu_{W}^{EH} = \mu_{W}^{\Pi 0}(T_{0}, P_{0}) + \int_{T_{0}}^{T} (\Delta H_{W}^{H\Pi} / RT^{2}) dT + \int_{P_{0}}^{P} (\Delta V_{W}^{H\Pi} / RT) dP$$

$$\mu_{W}^{EH} = \mu_{W}^{\Pi 0} + RT \ln[f_{pureW}^{EH} / f_{pureW}^{\Pi}]$$

$$= \mu_{W}^{\Pi 0} + RT \ln[P_{W}^{EH} \phi_{W}^{EH} / P \phi_{pureW}^{\Pi}] + \Delta V_{W}^{EH} [P - P_{W}^{EH}]$$

$$\ln[P_{W}^{satEH} / atm] = 17.410 - 6072.3 / [T / K]$$

Chemical Equility

- Three-phase equilibria
 - $\mu_{i}^{\Pi(1)} = \mu_{i}^{\Pi(2)}$ $\mu_{W}^{\Pi} \mu_{W}^{\Pi 0} = \mu_{W}^{H} \mu_{W}^{\Pi 0}$ $\mu_{W}^{H} \mu_{W}^{\Pi 0} = RT \sum_{j} v_{j} \ln[1 C_{i,j} f_{i}^{\Pi} / (1 + C_{i,j} f_{i}^{\Pi})]$

+ $RT \ln[P_W^{EH} \phi_W^{EH} / P \phi_{pureW}^{\Pi}] + \Delta V_W^{EH} [P - P_W^{EH}]$

Two-phase equilibria

 $\mu_W^\Pi - \mu_W^{\Pi 0} = \mu_W^H - \mu_W^{\Pi 0}$

• Phase equilibria for containing electrolyte $\mu_i^L = \mu_{i,EoS}^L + RT \ln a_i^E$

Pure parameters for NLF-HB EOS

• Pure parameter regression

Vapor pressure and saturated liquid & vapor density

Table 1. Pure parameters for NLF-HB EOS

	\mathcal{E}_{a}	\mathcal{E}_b	\mathcal{E}_{c}	r _a	$r_b \times 10^3$	$r \times 10^{3}_{c}$
H ₂ O	134.022	7.8×10 ⁻⁵	-0.229	1.727	-0.002	-3.749
C_2H_6	76.378	-4.9×10 ⁻⁷	-0.110	5.091	-0.007	10.384

 $\varepsilon_{ii} / k = \varepsilon_a + \varepsilon_b (T - 273.15) + \varepsilon_c [T \ln(273.15/T) + (T - 273.15)]$

 $r_i = r_a + r_b(T - 273.15) + r_c[T \ln(273.15/T) + (T - 273.15)]$

• Hydrogen-bonding parameters for H₂O-H₂O interaction

 $E_{HB}^{0} = -17.95 \ kJ \ mol$ $S_{HB}^{0} = -16.6 \ kJ \ mol$

Gibbs Energy Model(Lee et al., 1996)

• Pure parameter

- Solvent or non-ionic molecule : 2 parameters
- Ion : 3 parameters

Components	$r_{s,j}[Å]$	r _j [Å]	ε _{ii} [kJ/mol]
Water	-	2.500	2.062
Ethane	-	6.3056	0.1733
Na ⁺	2.327	2.554	5.521
Cl ⁺	3.017	0.484	1.362

• $H_2O - C_2H_6$ interaction parameter $k_{ij}=0.6276-187.123/T[K]$

Experimental Apparatus

- System accuracy
 - Pressure : ±0.06
 MPa
 - ◆ Temp. : ±0.05 K
 - Mole fraction : 5.3%
 - Reproducibility of syringe pump : 0.5%

Figure 2. The experimental apparatus for measurement of the equilibrium pressure and the solubility of dissolved gas in the hydrate containing equilibria

(1)vacuum pump; (2)magnetic stirrer; (3)sampling cell; (4)sampling valve; (5)sampling loop;
(6)metering pump; (7)density transducer; (8)water bath; (9)equilibrium cell; (10)flask; (11)syringe pump; (12)line filter; (13)gas bomb; (14) pressure gauge (15) McHugh type variable volume view cell

V_{CH4} - L_W equilibria

b) Mole fraction of watee in ethane rich phase Figure 3. Isothermal vapor-liquid equilibria for water +ethane system at 298.15 K

Three-phase equilibria

Table 4. Kihara	a potential fo	r ethane hydra	ate
-----------------	----------------	----------------	-----

	ε/ <i>k</i> [K]	σ [Å]	$a^{a)}$ [Å]	
C_2H_6	144.7597	3.2606	0.5651	

- a) Radius of the spherical core(*a*) was from Sloan(1998)
 - Table 5. Comparison of calculated

3-phase equilibrium pressure

Dhaga	nta	Calculated error ^{a)}				
Phase	pts	Present	Sloan	Klauda		
H-I-V _{C2H6}	7	2.8	6.8	4.0		
H-L _W -V _{C2H6}	61	2.6	9.0	5.2		
H-L _W -L _{C2H6}	17	15.4	35.8	-		
a) Absolute Average Deviation in pressure						

Figure 4. Comparison of experimental and calculated equilibrium pressure of ethane hydrate in three-phase equilibria.

$H-\Pi_{C2H6}$ Equilibria

Table 6. Comparison of calculatedWater content in ethane rich phase

Phase	pts	Sloan ^{a)} [%]	Present ^{a)} [%]
H-V _{C2H6} ^{b)}	3	69.3	21.6
H-L _{C2H6} ^{b)}	4	14.0	16.1
H-L _{C2H6} ^{c)}	6	16.6	29.2

a) absolute Average Deviation in mole fraction

b) Song and Kobayashi(1994)

c) Sloan et al.(1986)

Figure 5. Comparison of calculated water contents in ethanerich phase of $H-L/V_{C2H6}$ equilibria with data of Sloan et al. (1986) and Song and Kobayashi (1994)

H-Lw equilibria

Table 7. Con Ethane solul	mparison bility in w	of calculated vater phase		200 -		[
NaCl	pts	AAD ^a)[K]		150 -			
0	3	0.09	ы				
1 M	3	4.84	re / ba				
a) Absolute Average Deviation in temperature(K)		Pressu	100 -		I data at $x = 0.0004115$ I data at $x = 0.0004677$ (NaCl 1 M Ilation at $x = 0.0004115$ Ilation at $x = 0.0004115$ (NaCl 1 M Ilation at $x = 0.0004677$ Ilation at $x = 0.0004677$		
				27	0	275	280
						Tem	perature / K

Figure 6. Comparison of present calcualtion and experimental data of H-Lw equilibria of ethane hydrate

Thermodynamics & Properties Lab.

of ethane in liquid water phase of H-Lw equilibria with experiments at 100 bar

Conclusion

- H-Lw Equilibrium compositions of ethane were experimentally determined.
- Recently proposed NLF-HB EOS was applied to various hydrate-containing phase equilibria.
- Effects of salt on hydrate-containing phase equilibria were experimentally determined for H-Lw equilibria and predicted for three-phase (H-I- V_{C2H6} , H-L_W- V_{C2H6} , H-L_W-L_{C2H6}) and two-phase (H-L_W) equilibria.