Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

H. Orbey, C. P. Bokis, and C. C. Chen *Ind. Eng. Chem. Res.* **1998**, *37*, 4481-4491

Yong Soo Kim Thermodynamics & Properties Lab. Chemical and Biological Engineering, Korea Univ.

Contents

\bullet Introduction

- ◆ LDPE process
- Modeling by Equation of State
- Application of the Equation of state(EOS)
	- Sanchez-Lacombe Lattice model(SL model)
	- Statistical Associating Fluid Theory (SAFT)
	- Polymer-SRK Equation of State
	- Determination of pure component parameters
	- Correlation of Binary VLE of ethylene-LDPE mixture
- \bullet Simulation of Flash Operations in the LDPE process
- \bullet Conclusion

LDPE Process

Bernard et al., "Phase Equilibrium in High-Pressure Polyethylene technology", *I&EC*, **1995**, 34, 1501-1516

Modeling by Equation of State

- \bullet Characteristics of LDPE process
	- ◆ Highly non-ideal at high pressure
	- Difference in size between polymer and solvent
	- ◆ Broad molecular weight distribution
	- Existence of variable multi-phase
- \bullet Advantage on using equation of state
	- Application to the region between low pressure to supercritical condition
	- Unified method to predict the behavior of multi-phase equilibria
	- Ability of describing volumetric, calorimetric and phase equilibrium properties at the same time

Sanchez-Lacombe Lattice Model (SL model)

 \bullet Pressure

$$
\tilde{\rho}^2 + \tilde{P} + \tilde{T} \left[\ln(1 - \tilde{\rho} + \left(1 - \frac{1}{r}\right) \tilde{\rho} \right] = 0
$$

$$
\tilde{T} = \frac{T}{T^*} \qquad \tilde{P} = \frac{P}{P^*} \qquad \tilde{\rho} = \frac{\rho}{\rho^*} \qquad \text{with} \qquad T^* = \frac{\varepsilon^*}{k} \qquad P^* = \frac{\varepsilon^*}{v^*} \qquad \rho^* = \frac{M}{rv^*}
$$

 \bullet Parameters and mixing rule

$$
v_{mix}^* = \sum_i \sum_j \phi_i \phi_j v_{ij}^* \qquad \varepsilon_{mix}^* = \frac{1}{v_{mix}^*} \sum_i \sum_j \phi_i \phi_j \varepsilon_{ij}^* v_{ij}^* \qquad \frac{1}{r_{mix}} = \sum_i \frac{\phi_i}{r_i}
$$

$$
\phi_i = \left(\frac{w_i}{\rho_i^* v_i^*}\right) \left(\sum_j \frac{w_j}{\rho_j^* v_j^*} \qquad v_{ij}^* = \left(v_{ii}^* + v_{jj}^*\right) \left(1 - l_{ij}\right)\right) \left(2 \qquad \varepsilon_{ij}^* = \sqrt{\varepsilon_{ii}^* \varepsilon_{jj}^*} \left(1 - k_{ij}\right)\right)
$$

Statistical Associating Fluid Theory (SAFT)

Compressibility factor								
\n $Z = \frac{P_V}{RT} = 1 + Z_{hs} + Z_{disp} + Z_{chain} + Z_{assoc}$ \n	\n $Z_{hs} = \frac{6}{\pi N_A \rho} \left[\frac{\xi_0 \xi_3}{1 - \xi_3} + \frac{3 \xi_1 \xi_2}{(1 - \xi_3)^2} + \frac{(3 - \xi_3) \xi_2^3}{(1 - \xi_3)^3} \right]$ \n	\n $Z_{disp} = r \sum_n \sum_m m D_{nm} (u / kT)^n (\xi_3 / \xi_{3cp})^m$ \n	\n $Z_{chain} = \sum_i x_i (1 - r_i) L(d_i)$ \n	\n $Z_{assoc} = \rho \sum_i x_i \left[\sum_i (1 / X^{S_i} - 1 / 2) (\partial X^{S_i} / \partial \rho) \right]$ \n	\n $X^{S_i} = (1 + N_A \sum_j \sum_{Y_j} x_j \rho X^{Y_j} W_{ij})^{-1}$ \n	\n $Aise formed$ \n	\n $Aise formed$ \n	\n $Asee Formed$ \n

Statistical Associating Fluid Theory (SAFT)

 \bullet Parameters

$$
\eta = 0.74048 \rho m v^0 \qquad v^0 = v^{00} \left[1 - C \exp \frac{-3u^0}{kT} \right]^3 \quad u = u^0 \left[1 + \frac{e}{kT} \right]
$$

 \bullet Mixing rule

$$
v_{ij}^0 = \left[\frac{1}{2} \left((v_i^0)^{1/3} + (v_j^0)^{1/3} \right) \right]^3 \qquad u_{ij} = (1 - k_{ij}) \left(u_{ii} u_{jj} \right)^{1/2} \qquad m_{ij} = \frac{(m_i + m_j)}{2} (1 - l_{ij})
$$

$$
\frac{u}{kT} = \frac{\sum_{i} \sum_{j} x_{i} x_{j} m_{i} m_{j} \frac{u_{ij}}{kT} (v^{0})_{ij}}{\sum_{i} \sum_{j} x_{i} x_{j} m_{i} m_{j} (v^{0})_{ij}} \qquad m = \sum_{i} \sum_{j} x_{i} x_{j} m_{ij}
$$

Polymer-SRK Equation of State

 \bullet Pressure

$$
P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b)}
$$
 with $b = 0.08664 \frac{RT_c}{P_c}$ and $a = 0.42748 \frac{R^2 T_c^2}{P_c} \alpha$

$$
\alpha = [1 + C_1(1 - T_R^{0.5}) + C_2(1 - T_R^{0.5})^2 + C_3(1 - T_R^{0.5})^3]^2
$$

◆ For polymer

$$
\frac{T_c^P - 1300}{T_c^m - 1300} = \frac{1}{D_P^{0.25}} \qquad T \text{ in Kelvin } \frac{P_c^P - 5}{P_c^m - 5} = \frac{1}{D_P} \quad P \text{ in bar and } \qquad D_P = \frac{M_n}{M_{monomer}}
$$

 \bullet Parameters and mixing rule

$$
b = \sum_{i} x_i b_i
$$

$$
\frac{a}{bRT} = \sum_{i} x_i \frac{a_i}{RTb_i} - 1.546 \left(\frac{G^{ex}}{RT} + \sum_{i} x_i \ln \frac{b}{b_i} \right)
$$

Determination of Pure Component Parameters

\bullet Ethylene

- Using the vapor pressure and saturated liquid and vapor density
- All models should represent the behavior of supercritical region.

Figure 1. Properties of saturated ethylene from various EOS models. The points represent data from Beaton and Hewitt.¹² The solid lines are estimations from the SAFT model, the long-dashed lines are estimations from the polymer-SRK model, and the shortdashed lines are estimations from the SL model.

Determination of Pure Component Parameters

\bullet Polyethylene

 All models should represent properties for a different numberaverage molecular weight

Determination of Pure Component Parameters

Table 1. Pure Component or Segment Parameters Used in Various EOS Models

Correlation of Binary VLE of ethylene-LDPE mixture

 \bullet SAFT model

> • The difference between using two binary parameters versus one binary parameter is not very noticeable.

Figure 7. Vapor-liquid equilibrium between polyethylene (M_n) = 31 700, M_w = 248 700) and ethylene at 399 K (\bullet), 413 K (\blacktriangle), and 428 K (n) from the SAFT model. The points represent data from the compilation of Hao et al.¹⁵ The solid lines are the results of correlation with $\xi_{ii} = 0.1479$. The two-parameter correlation of the data results in parameters $\xi_{ii} = 0.1417$ and $\zeta_{ii} = 0.0013$; these results are not shown for brevity as they are very similar to the one-parameter correlation. The dashed lines are predictions obtained from the SAFT model with all binary parameters set to zero.

Correlation of Binary VLE of ethylene-LDPE mixture

\bullet SL model

• For using two binary parametes the model is capable of representing the high-pressure region better.

Figure 8. Vapor-liquid equilibrium between polyethylene (M_n) = 31 700, M_w = 248 700) and ethylene at 399 K (\bullet), 413 K (\bullet), and 428 K (\blacksquare) from the SL model. The points are data from the compilation of Hao et al.;¹⁵ the solid lines are the results of correlation with $k_{jj} = 0.1060$ (a) and with $k_{jj} = -0.0093$, $l_{jj} =$ -0.4310 (b). The dashed lines are predictions obtained from the SL model with all binary parameters set to zero.

Correlation of Binary VLE of ethylene-LDPE mixture

 \bullet Polymer –SRK model

> ◆ Using one binary parameter the model represents the VLE behavior quite accurately

Figure 9. Vapor-liquid equilibrium between polyethylene (M_n) $=$ 31 700, $M_w =$ 248 700) and ethylene at 399 K (\bullet), 413 K (\blacktriangle). and 428 K (a) from the polymer-SRK model. The points are data from the compilation of \hat{H} ao et al.;¹⁵ the solid lines are the results of correlation with $\gamma = 1.05$. The dashed lines are predictions obtained from the SAFT model with $x = 0$.

Simulation of Flash Operations in the LDPE process

- \bullet The estimation of the amount of monomer left in the final product
- \bullet Polymer residues in vapor phase => Flugging in recycle

Figure 10. Schematic diagram of simulation flow sheet.

Simulation results

Table 2. Flash Simulation Results (Masses of Streams)
with Various EOS Models and a Single Binary **Interaction Parameter**

Conclusion

- \bullet SAFT model is the most convenient from the point of availability of segment-based pure component parameters.
- \bullet For polymer-SRK we had to devise a method for the model parameters as a function of molecular size.
- For SL model a general method of estimation of pure component parameters is necessary for which no data exists.
- In general, for the polymeric molecules EOSs are very capable of prediciting the behavior of phase equilibria, yet they have some shortcomings in important areas such as the critical region.