Room Temperature Ionic Liquids

Kim, Yong Soo

Department of Chemical Engineering, Korea University

What are ionic liquids?

- Organic salts composed of cations and anions that are liquid at conditions around room temperature
- No effective vapor pressure, thermal stability, wide range of liquid, and large electrochemical window

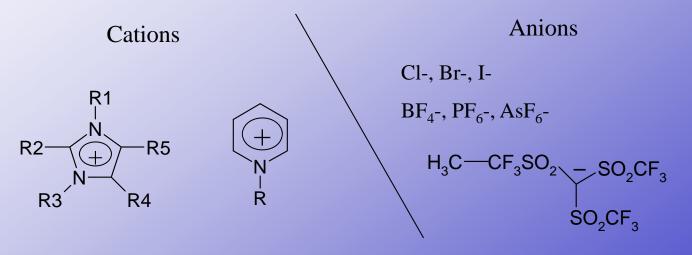


Figure 1. Structure of imidazolium/pyridinium salts

Historical Review

- First discovery of the room temperature ionic liquid
 - N-ethylpyridinium bromide-aluminium chloride melt(Hurley et al., 1951)
- Development of air- and water-stable imidazolium based ILs by Wilkes et al.(1992)
- The range of available anions and cations has expanded enormously in the past decades.
- Application of Chemical synthesis, catalysis, and electrolytes (Holbrey et al., 1999)
- Extraction of organic solutes using ILs and supercritical CO₂ (Blanchard et al., *Nature*, 1999)

Preparation (Hagiwara et al., 2000)

• The reaction of N-alkylimidazole, RIm, with alkyl salts, R'X in appropriate organic solvents

 $\bullet \operatorname{RIm} + \operatorname{R'X} \longrightarrow \operatorname{RR'Im}^+X^-$

• The anion exchange using N-alkylimidazolium halides

- Synthesis of alkylimidazolium halides
 - $RIm + R'X' \longrightarrow RR'Im^+X'^-$ where X'=Cl, Br, I
- Anion exchange by metathesis of the product with the corresponding acids or their salts
 - $RR'Im^+X'^- + MX \longrightarrow RR'Im^+X^- + MX'$

Preparation

- Example :1-Ethyl-3-methylimidazolium tetrafluoroborate (Holbrey et al, 1999)
 - Tetrafluoroboric acid 0.116 mol(48% solution in water 15.2 cm³)
 + silver(I) oxide (0.058 mol) in water (50 cm³)
 - Solution is stirred for a further hour until all the silver(I) oxide completely reacted to give a colorless solution
 - 1-ethyl-3-methylimidazolium bromide(0.116 mol) in water(200 cm³) was added to the reaction mixture and stirred for 2 hours.
 - Yellow precipitate of silver bromide was removed by filtration and heated at 70°C *in vacuo*.
 - pale yellow liquid, yield 21.36 g (93%)
 - Cost
 - Preparation : about 7,500 won/g
 - Purchasing price (Aldrich) : about 67,000 won/g

- Melting point (-96°C ~)
 - Melting point is lowered as increasing length of alkyl chain in cations. (Larsen et al., 2000)
 - The increasing disruption of crystal packing overrides increased van der Waals interactions between the larger components.
 - C-2 position of the imidazolium cation : Hydrogen bonding
 - Carborane salts : Methylation of the C-2 position of the imidazolium cations does not lower melting points. (Larsen et al.,2000)
 - Tetrafluoroborate salts : The evidence for hydrogen bonding is inconclusive.(Holbrey et al., 1999)
 - In general methylation of C-2 position increases the melting points.
 - The effect of the van der Waals interaction via methyl group dominates over the electrostatic interaction via proton on C-2.(Hagiwara et al., 2000)

- Density (Hagiwara et al., 2000)
 - $1.1 \sim 1.6 \text{ g/cm}^3$ at ambient temperature (291~303K)
 - The compounds of bulky, and therefore, weakly coordinating anions such as CF₃(CF₂)₃SO₃⁻ and (CF₃SO₂)₃C⁻ possess relatively high densities regardless of counter ions.
- Viscosity (Hagiwara et al., 2000)
 - Several tens to hundred times that of water at room temperature
 - Longer alkyl chains of cation makes the liquid more viscous.
 - Structure and basicity of anion affects the viscosity.
 - The decrease of the size of anion decreases the van der Waals interaction but increases the electrostatic interaction through hydrogen bonding.

Polarity

The simplest indicators of solvent strength

- Aki et al.(*Chem. Commun.*, 2001)
 - [BMIM][PF₆], [C₈mim][PF₆], [BMIM][NO₃], and [N-bupy][BF₄] are more polar acetonitrile and less polar than methanol.
 - Theses ionic liquids are expected to be at least partially miscible with water
- Carmichael et al.(J. Phys. Org. Chem. 2000)
 - 1-alkyl-3-methylimidazolium ionic liquids
 - Anion : [PF₆], [BF₄], [(CF₃SO₂)₂N], and [NO₃]
 - They are in the same polarity region as 2-aminoethanol and lower alcohols (methanol, ethanol and butan-1-ol)

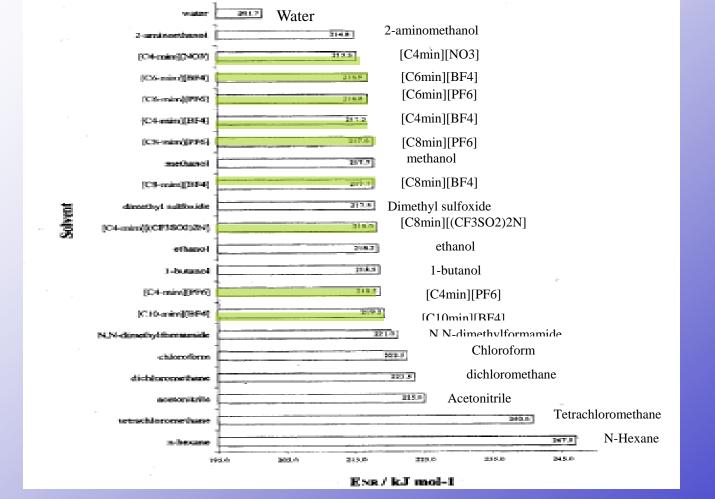


Figure 2. E_{NR} values for [C_n-min]X ionic liquids and common conventional solvents

Phase Behavior of Ionic Liquid and Water

- The cross contamination of the aqueous and IL rich phases
 - The presence of IL in the aqueous phase : Environmental problem
 - The presence of water in the IL phase can dramatically affect the physical properties
- General guide lines on IL/water miscibility(Seddon et al, 2000)
 - Halide, ethnoate, nitrate and trifluoroacetate salts : totally miscible
 - $[PF_6]$ and $[(CF_3SO_2)_2N]$: immiscible
 - [BF₄] and [CF₃SO₃] : totally miscible or immiscible depending on the substituents on the cation

Phase Behavior of Ionic Liquid and Water

- Vapor–Liquid Equilibria (Anthony et al., 2001)
 - Using a gravimetric microbalance(IGA 003, Hiden Analytical)
 - Measuring the weight change of IL phase as water vapor absorb into ionic liquid
 - Water is more soluble in systems where the counteranion is [BF₄] rather than [PF₆]. => higher charge density for [BF₄]
 - Increasing the alkyl chain decreases the solubility of water.

Phase Behavior of Ionic Liquid and Water

- Liquid-Liquid Equilibria (Anthony et al., 2001)
 - IL contents in the water-rich phase : UV-vis spectroscopy
 - Water content in the IL-rich phase : Karl Fisher titrator
 - The mutual solubilities of water and $[C_8min][PF_6]$ are lower than those for the equivalent IL with a short alkyl chain, $[bmin][PF_6]$
 - Changing the anion from [PF₆] to [BF₄] increases the mutual solubilities.

	IL in aqu	eous phase	Water in IL phase		
Ionic Liquid	wt. %	Mol fraction	wt. %	Mol fraction	
[C ₈ min][PF ₆]	$0.7 {\pm} 0.1$	3.5×10 ⁻⁴	1.3 ±0.5	0.20	
[bmin][PF ₆]	2.0 ± 0.3	1.29×10 ⁻³	2.3 ± 0.2	0.26	
[C ₈ min][BF ₄]	1.8 ± 0.5	1.17×10 ⁻³	10.8 ± 0.5	0.63	

Table 1. LLE	Results for v	water with	Ionic liquids	at ambient conditions
	10000100			

Phase Behavior of Ionic Liquid and Carbon Dioxide (Blanchard et al., 2001)

- Large quantities of CO₂ dissolve in the IL phase, but no appreciable amount of IL solubilize in the CO₂ phase
- The water impurity in the IL is the likely culprit responsible for the low CO₂ solubilities in the water-saturated IL-rich phase.

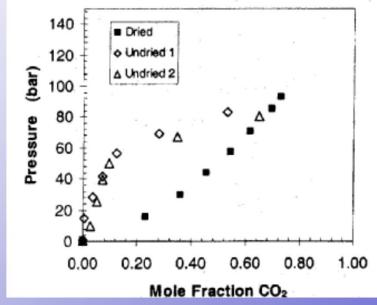


Figure 3. [bmin][PF₆]-CO₂ liquid phase compositions for dried vs. wet ionic liquid samples at 40°C

Phase Behavior of Ionic Liquid and Carbon Dioxide

Table 2. Ionic liquid-CO2 solubility(X_{CO2}) and liquid molar volumes(mL/mol) at 40, 50 and 60°C and elevated pressures (Blanchard et al., 2001)

]	$\Gamma = 40^{\circ}$	C	Г	$C = 50^{\circ}C$	2	r.	Г=60°С	
Ionic Liquid	P(bar)	X _{CO2}	mL/ mol	P(bar)	X _{CO2}	mL/ mol	P(bar)	X _{CO2}	mL/ mol
[bmin][PF ₆]	95.67	0.729	71.2	92.46	0.675	83.9	93.01	0.667	84.5
[C ₈ min][PF ₆]	92.67	0.755	80.2	92.67	0.705	103.0	92.88	0.726	94.8
[bmin][NO ₃]	92.00	0.513	99.2	92.62	0.530	95.0	93.17	0.522	95.9
[C ₈ min][BF ₄]	92.90	0.708	96.9	92.28	0.671	106.1	93.73	0.651	111.5
[N-bupy][BF ₄]	91.59	0.579	94.0	92.35	0.581	92.2	95.80	0.549	98.1
[emim][EtSO ₄]	92.68	0.423	121.0	94.27	0.403	124.6	94.61	0.457	111.1

Phase Behavior of Ionic Liquid and Carbon Dioxide

The solubility of CO2 in ILs

- The greast solubility in the ILs with the PF_6^- anion.
- The slight change with temperature for all of the ILs

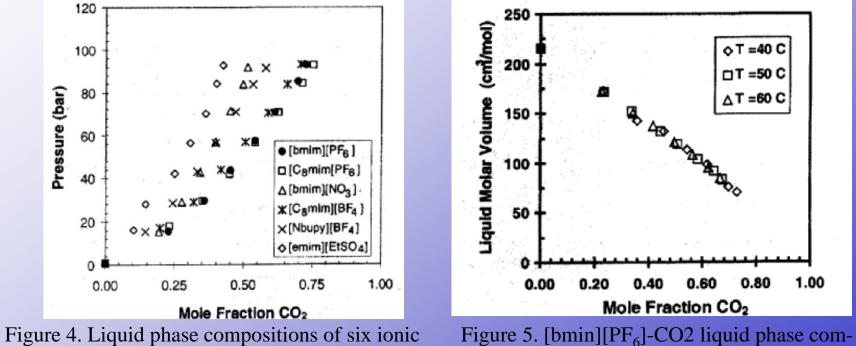


Figure 4. Liquid phase compositions of six ionicFigure 5. $[bmin][PF_6]$ -CO2 liliquid-CO2 mixtures at 40°Cpositions at 40, 50, and 60°C

Thermodynamics & Properties Lab. 15

Application (I)

- Recovery of organic products from ionic liquids using supercritical carbon dioxide(Blanchard et al, I&EC, 2001; Nature, 1999)
 - Measuring the recovery rates of aromatic and aliphatic solutes from [bmim][PF₆]
 - This work has shown that CO₂ can completely extract a wide array of organic solutes from an ionic liquid.

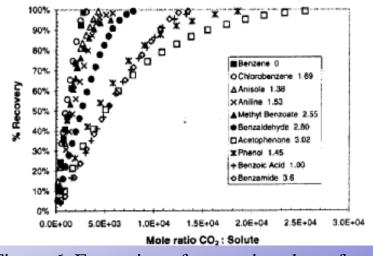


Figure 6. Extraction of aromatic solutes from $[bmim][PF_6]$ with SCCO₂ at 40 °C and 138 bar

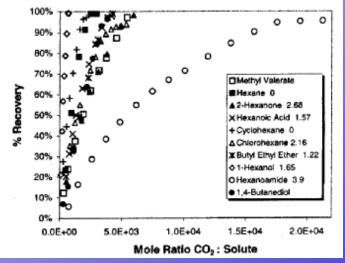


Figure 7. Extraction of aliphatic solutes from $[bmim][PF_6]$ with SCCO₂ at 40 °C and 138 bar

Application (II)

- Solvent extraction of strontium nitrate by a crown ether using roomtemperature ionic liquids(Dai et al., J.Chem.Soc.,Dalton Trans., 1999)
 - Improving the ability of crown ethers to remove metal ions from aqueous solutions
 - The highst distribution coefficient value is over four orders of magnitude greater than those of the conventional extraction systems.

Extract phase	D(with crown ether)	D(without crown ether)
BuMe2ImPF6	4.2	0.67
BuMeImPF6	2.4×10 ¹	0.89
EtMe2ImTf2N	4.5×10 ³	0.81
EtMeIMTf2N	1.1×10 ⁴	0.64
PrMe2ImTf2N	1.8×10 ³	0.47
PrMeImTf2N	5.4×10 ³	0.35
Toluene	7.6×10 ⁻¹	Not measurable
Chloroform	7.7×10 ⁻¹	Not measurable

References

- Aki, S.N.V.K., Brennecke, J.F. and Samanta, A., Chem. Commun., 2001, 413
- Anthony, J.L., Maginn, E.J. and Brennecke, J.F., J. Phys. Chem. B, 2001, 105, 10942
- Blanchard, L.A., Hancu, D., Beckman, E.J. and Brennecke, J.F., *Nature*, 1999, 399, 28
- Blanchard, L.A., Gu, Z. and Brennecke, J.F., J. Phys. Chem. B, 2001, 105, 2437
- Blanchard, L.A. and Brennecke, J.F., Ind. Eng. Chem. Res., 2221, 40, 287
- Carmichael, A.J. and Seddon, K.R., J. Phys. Org. Chem., 2000, 13, 591
- Dai, Sheng, Ju, Y.H., and Barnes, C.E., J. Chem. Soc., Dalton Trans., 1999, 1201
- Hurley, F.H. and Wier, T.P., J. Electrochem. Soc. 1951,98,203
- Holbrey, J.D. and Seddon, K.R., Clean Prod. Process. 1992, 13, 965
- Hagiwara, R. and Ito, Y., J. Fluor. Chem. 2000, 105, 221
- Holbrey, J.D. and Seddon, K.R., J. Chem. Soc., Dalton Trans., 1999, 2133
- Larsen, A.S., Holbrey, J.D., Tham, F.S. and Reed, C.A., J. Am. Chem. Soc., 2000, 122, 7264
- Seddon, K.R., Stark, A. and Torres, M.J., Pure Appl. Chem. 2000, 72, 2275
- Wilkes J.S. and Zaworotko, M.J., J. Chem. Soc. Chem. Commun. 1992, 965