## L<sub>W</sub>-H Equilibrium Measurements and Unified Predictions of Hydrate-Containing Phase Equilibria for Methane, Ethane, Propane and Their Mixtures

#### S. O. Yang, Y. S. Kim, S. K. Ryu and C. S. Lee

Thermodynamics and Properties Laboratory Dept. of Chemical Engineering, Korea University

## Motivation

- The methane hydrate as a possible energy resource or the CO<sub>2</sub> hydrate as a deep-ocean sequestration
  - Necessity for reliable solubility data in water-rich phase of hydrate-containing systems (H-L<sub>W</sub>).
  - Measurement of solubility using indirect method for sparingly soluble gas components.
- Necessity for comprehensive calculation methods
  - Unified method to the hydrate-containing systems
  - The applicability of *Nonrandom lattice fluid hydrogen bonding* theory (You et al. 1994a, 1994b; Lee et al., 2001)

## **Computation of Hydrate Phase Equilibria**

Equality of Chemical potential(or fugacity)

• 
$$\mu_i^H = \mu_i^{\alpha} \left(= \mu_i^{\beta}\right)$$
 or  $\mu_i^H - \mu_i^{EH} = \mu_i^{\alpha} - \mu_i^{EH} \left(= \mu_i^{\beta} - \mu_i^{EH}\right)$ 

•  $f_i^H = f_i^{\alpha} (= f_i^{\beta})$  where  $\alpha$  or  $\beta$  denotes V, L<sub>W</sub>, L<sub>C</sub> or Ice phase.

•  $\mu_i^{\alpha \text{ or } \beta}$  is obtained from EOS and  $\mu_W^{EH}$  and  $\mu_W^{Ice}$  from vapor pressure and saturated molar volume(Sloan et al., 1976)

- H-L<sub>W</sub>-V, H-I-V, H-L<sub>W</sub>-L<sub>C</sub> : Yang et al.(2000), **Present work (Mixture)**
- H-L<sub>W</sub>-V, H-I-V : Klauda and Sandler (2000)
- H-Lc, H-V, H-L<sub>W</sub> : Yang et al.(2000, 2001), **Present work (Mixture)**
- H-Lc, H-V : Sloan(1976)

#### **Computation of Hydrate Phase Equilibria**

•  $\mu_W^{\alpha \text{ or } \beta} - \mu_W^{EH}$  is obtained from  $\Delta \mu_W^{EH}(T_0, P_0), \Delta H_W^{EH}(T)$ , and  $\Delta V_W^{EH}(P)$ (Holder et al., 1980)

$$\frac{\mu_W^{EH} - \mu_W^{\Pi}}{RT} = \frac{\Delta \mu_W^{EH}(T_o, P_o)}{RT} - \int_{T_o}^T \frac{\Delta H_W^{EH}}{RT^2} dT + \int_{P_o}^P \frac{\Delta V_W^{EH}}{RT} dP - \ln x_w \gamma_w$$

• H-L<sub>W</sub>-V, H-I-V : Holder et al.(1980), Sloan (1998)

• H-V, H-L<sub>C</sub> : Anderson and Prausnitz(1986), Munck et al.(1988)

•  $\mu_W^H - \mu_W^{EH}$  is obtained from the statistical model by van der Waals and Platteeuw (1959).

$$\mu_{W}^{H} = \mu_{W}^{EH} - RT \sum_{m} \nu_{m} \ln[1 + \sum_{j} C_{j,m} f_{j}^{\Pi}]$$

## **Chemical Potential in Fluid Phase**

- Nonrandom Lattice Fluid Hydrogen Bonding Theory
  - NLF EOS by You et al. [1994 a, b]
  - Expansion to associating system using Veytsman statistics[1990] by Yeom et al. [1999]
  - ♦ A normalization of Veytsman statistics by Lee et al. [2001]
- Parameters for NLF-HB theory
  - Pure species : energy and size parameters
  - Hydrogen-bonding energy and entropy for  $H_2O-H_2O$  interaction
  - Binary interaction parameter for interactions between molecules

#### **Chemical Potential of Water in Hydrate Phase**

Statistical model by van der Waals and Platteeuw(1959)

• 
$$\mu_W^H = \mu_W^{EH} - RT \sum_m \nu_m \ln[1 + \sum_j C_{j,m} f_j^{\Pi}]$$

•  $\int_{t}^{n} t$  is the fugacity of a component *j* in the equilibrium fluid phase.

 $f_{j}^{\Pi} = P^{0} \exp[(\mu_{j}^{\Pi} - \mu_{j}^{0})/RT]$ 

•  $C_{j,m}$  is the Langmuir constants.

$$C_{j,m}(T) = \frac{4\pi}{kT} \int_{0}^{R_i} \exp\left(-\frac{W(r)}{kT}\right) r^2 dr$$

- Calculated from the Kihara potential function
- Kihara potential parameters are fitted from the three-phase equilibrium pressure for each guest species.

### **Chemical Potential of Empty Hydrate**

• 
$$\mu_W^{EH} = \mu_W^0 + RT \ln(P_W^{satEH} \phi_W^{satEH}) + V_W^{satEH} (P - P_W^{satEH})$$

- $\phi_W^{satEH}$  of the empty hydrate is assumed to be unity.
- Vapor pressure of empty hydrates
  - Fitted to equilibrium pressures of multi-guest and simple hydrates
  - Structure I :

$$\ln[P_W^{sat EH} / atm] = 17.410 - 6072.25 / T$$

• Structure II :

$$\ln[P_W^{sat EH} / atm] = 17.515 - 6121.34 / T$$

- Molar volume of empty hydrates
  - Correlated equation regressed by Avlonitis (1994)
  - $V_W^{satEH} = V_0 [1 + k_1 (T T_0) + k_2 (T T_0)^2 + k_3 (T T_0)^3]$

#### **Chemical Potential of Ice**

• If saturated vapor pressure and molar volume of ice are known

$$\mu_W^I = \mu_W^0 + RT \ln \left( P_W^{satI} \phi_W^{satI} \right) + V_W^{satI} \left( P - P_W^{satI} \right)$$

- Fugacity coefficient of ice,  $\phi_W^{satI}$  is assumed to be unity.
- Saturated vapor pressure is obtained from subcooled water properties(Perry et al., 1989)

$$\ln[P_W^{satI} / bar] = 17.9247 - \frac{6415.37}{T + 5.5171}$$

 Molar volume of ice use the correlation equation regressed by Avlonitis (1994)

## **Experiments**

- Direct method for small gas solubility
  - Applicable to salt-containing systems
  - Measurements by expansion of a liquid sample
  - Mole fraction of gas calculated by pressure changes in expansion chamber
    - Yang, S. O., Yang, I. M., Kim, Y. S. and Lee, C. S., "Measurement and prediction of phase equilibria for water+CO<sub>2</sub> in hydrate forming conditions", *Fluid Phase Equilib.*, **175** (2000), 79-85
    - Yang, S. O., Cho, S. H., Lee, H. and Lee, C. S., "Measurement and prediction of phase equilibria for water+methane in hydrate forming conditions", *Fluid Phase Equilib.*, **185** (2001), 53-63
  - Not applicable to very sparingly soluble hydrocarbons

## **Experiments**

- Indirect method for very small gas solubility
  - With known composition of liquid phase, the phase transition point is detected by visual inspection.
    - Rumph, B. and Maurer, G., "An Experimental and Theoretical Investigation on the solubility of Carbon Dioxide in Aqueous Solutions of Strong Electrolytes", *Ber. Bunsenges. Phys. Chems.*, 97(1993), 85-97
  - Present study for water + methane or ethane in hydrateforming conditions

#### **Experimental Apparatus**



Figure 1. The experimental apparatus for measurement of the equilibrium pressure and the solubility of dissolved gas in the hydrate containing equilibria

(1)vacuum pump; (2)magnetic stirrer; (3)sampling cell; (4)sampling valve; (5)sampling loop; (6)metering pump; (7)density transducer; (8)water bath; (9)equilibrium cell; (10)flask; (11)syringe pump; (12)line filter; (13)gas bomb; (14) pressure gauge (15) McHugh type variable volume view cell

#### **The Reliability of the Experimental Procedure**

- Comparison between present methane solubility in water and those of DECEHEMA series
- The accuracy in mole fraction
  - Present work : 4.8 % AAD
  - DECHEMA : 5.3 % AAD



### **Three Phase Equilibria for Methane Hydrates**



Figure 2. Comparison of experimental and calculated equilibrium pressure of methane hydrate in three phase equilibria

#### **Three Phase Equilibria for Ethane Hydrates**



Figure 3. Comparison of experimental and calculated equilibrium pressure of ethane hydrate in three phase equilibria

#### **Three Phase Equilibria for Propane Hydrates**



Figure 4. Comparison of experimental and calculated equilibrium pressure of propane hydrate in three phase equilibria

#### **Three Phase Equilibria for Mixed Hydrates**



Figure 5. Comparison of calculated dissociation pressure of methane+ethane hydrate with measurements by Deaton and Frost (1946) for structure I

#### **Three Phase Equilibria for Mixed Hydrates**



Figure 6. Comparison of calculated equilibrium pressure of ethane + propane hydrate with measurements for structure I hydrate

#### **Three Phase Equilibria for Mixed Hydrates**



Figure 7. Comparison of calculated equilibrium pressure of ethane + propane hydrate with measurements for structure II hydrate

#### **Solubility of Methane in H-L<sub>w</sub> Equilibria**



Figure 8. Comparison of calculated methane solubility in liquid water phase of  $H-L_w$  equilibria with present experimental data

Figure 9. Comparison of present experimental methane solubility in liquid water phase of H-Lw equilibria with experimental data by Yang et al. (2001) and Handa's prediction (1990)

#### **Solubility of Ethane in H-L**<sub>w</sub> Equilibria



Figure 10. Comparison of calculated ethane solubility in liquid water phase of  $H-L_w$  equilibria with present experimental data

#### **Water Content of Hydrocarbon-Rich Phase in H-**<sub>I</sub>**Equilibria**



Figure 11. Comparison of calculated water contents in methane-rich phase of H-V equilibria with isobaric experimental data by Aoyagi et al. (1980) and Sloan's calculation (1998)

#### **Water Content of Hydrocarbon-Rich Phase in H-**<sub>I</sub>**Equilibria**



Figure 12. Comparison of calculated water contents in ethanerich phase of H- $\Pi_{C2H6}$  equilibria with Sloan et al. (1986) and Song and Kobayashi (1994).

## Water content of hydrocarbon-rich phase in $H-\Pi_i$ equilibria for mixed hydrate



Figure 13. Comparison of calculated water contents in hydrocarbonrich phase of H-L equilibria with isobaric experimental data of Song and Kobayashi (1994) for water+ethane+propane system at 3.45 MPa

# Water content of hydrocarbon-rich phase in $H-\Pi_i$ equilibria for mixed hydrate



Figure 14. Comparison of calculated water content in hydrocarbon-rich phase of H-V equilibria with isobaric experimental data of Song and Kobayashi (1982) for water + methane + propane system, mole fraction of propane in vapor phase is 0.0531

## Conclusions

- Solubilities in water-rich phase of  $\text{H-L}_{W}$  for methane and ethane hydrate were obtained with the accuracy of 3.1 % and 5.3 % in mole fraction, respectively.
- A unified calculation method was investigated with the nonrandom lattice fluid hydrogen bonding theory. The Kihara parameters in vdWP model and the vapor pressure of the empty hydrate were optimized.
- With a single binary parameter and hydrogen bonding energy, various phase equilibria of simple hydrate and mixed hydrate were calculated with good accuracy.