A Helmholtz energy equation of state for calculating the thermodynamic properties of fluid mixtures

Eric W. Lemmon, Reiner Tillner-Roth

Abstract

• New Approach

based on highly accurate EOS for the pure components combined at the reduced T, ρ of the mixture

► reducing parameters for the T,p : composition

- For simple mixtures
 - with relatively simple functions
 - → very accurate representation
- For nonideal mixtures
 - > modified reducing func.(T, ρ)+departure func.
 - \rightarrow 0.1% in density, 1% in C_v, 1% in bubble point pressure

Thermodynamics & Properties Lab.

Abstract

- Two applications of mixture model concepts
 - developed independently in USA and Germany over the same time period
 - including the development of individual equation for each binary system
 - generalization of the model for a wide variety of mixtures
 - Similarities and differences

- Dimensionless Helmholtz energy, $\alpha = A/RT$
 - Thermodynamic properties of pure fluids with high accuracy over a wide range of T, P
 - All thermodynamic properties from a single mathematical relation
 - A large number of adjustable coeff. (up to 58 terms reported)
 - Reference equation for the calculation of property tables and chart
 - accuracy : restricted only by the accuracy of available measurements

- Due to the complexity
 - Equation with many coefficients
 - → applied only to pure fluids
 - High-accuracy EOS
 - → developed for only about 30 pure substances

• Only a few attempts to describe mixture properties using multiparameter EOS

- Plocker et al. (1978)
 - one-fluid theory applied to modified Benedict-Webb-Rubin(mBWR) EOS
 - with a mixing rule for the pseudo-critical temperature
 - VLE and Enthalpies at high pressures
- Platzer and Maurer (1993)
 - generalized the 20-term Bender equation
 - prediction for multicomponents mixture properties
- Huber and Ely (1994)
 - extended corresponding states model based on mBWR EOS

• Mixture model (pure \rightarrow mixture)

based on high-accuracy pure fluid EOS for the pure components

pressure-explicit EOS

simple integration of pressure

*generally explicit in Helmholtz energy

>> adopted for the mixture

combination rules for the Helmholtz energy function of mixture components (not mixing rules)

→not required a fixed structure of the pure fluid equation

single mathematical expression

• General form of Helmholtz energy model

- independently developed by both authors during overlapping periods of time
- Tillner-Roth (1993)
 - Focused on developing an accurate formulation for individual binary mixtures for a large amount of accurate experimental data
- Lemmon (1996)
 - Focused on developing a generalized model capable of accurate property calculation for a large number of fluid mixtures

• <u>Purpose</u>

- additional detail and background for the models
 - →especially ideal mixture
- difference between the models

Helmholtz energy

• EOS for the pure fluids ideal part + residual part $\frac{A}{RT} = \alpha(\tau, \delta) = \alpha^{0}(\tau, \delta) + \alpha^{r}(\tau, \delta)$ $\alpha^{0}(\tau, \delta) = \ln \delta + c_{1} \ln \tau + \sum_{k=0}^{k_{1}} c_{k} \tau^{m_{k}} + \sum_{k=1}^{k_{2}} c_{k} \ln[1 - \exp(-a_{k}\tau)]$ $\alpha^{\mathrm{r}}(\tau,\delta) = \sum_{k=0}^{k+1} c_k \delta^{n_k} \tau^{m_k} + \sum_{k=0}^{k+1} c_k \delta^{n_k} \tau^{m_k} \exp(-\delta^{e_k})$ $\tau = \frac{T_n}{T}, \delta = \frac{\rho}{\rho} = \frac{V_n}{V}$ \triangleright reducing parameter T_n , V_n : critical properties

Helmholtz energy

• Transforming into the Helmholtz energy form by integrating the relation

$$p = \rho RT \left[1 + \delta \left(\frac{\partial \alpha^{r}}{\partial \delta} \right)_{\tau} \right]$$

• α of mixture : composition dependence

$$\alpha = \alpha^{0} + \alpha^{r}$$

• Ideal gas mixture : analytically from functions for the ideal gas properties of the pure fluids

$$\alpha^{0} = \alpha^{0}(T, V, \mathbf{x}) = \sum_{i=1}^{l} x_{i} \alpha_{i}^{0}(T, V) + \sum_{i=1}^{l} x_{i} \ln x_{i}$$

> consistent with ideal parts of the pure fluid equation with independent reduced variable τ , δ

• Residual Helmholtz energy

$$\alpha^{\mathrm{r}}(\tau, \delta, \mathbf{x}) = \sum_{i=1}^{l} x_{i} \alpha_{i}^{\mathrm{r}}(\tau, \delta) + \Delta \alpha^{\mathrm{r}}(\tau, \delta, \mathbf{x})$$

linear combination of the pure fluid residual energy
 departure function, Δα^r
 interaction of different species in the mixture
 Corresponding states principle
 shape factors : ratios of the critical properties

$$T_r = T \cdot h = T \frac{T_{n,r}}{T_n}, \quad \tau_r = \frac{T_{n,r}}{T_r} = \frac{T_n}{T} = \tau$$

Table 1

Thermodynamic properties calculated from the Helmholtz energy model [abbreviations: $\alpha_{\delta}^{r} = (\partial \alpha^{r} / \partial \delta)_{\tau,x}, \ \alpha_{\tau}^{r} = (\partial \alpha^{r} / \partial \tau)_{\delta,x}, \ \alpha_{\delta\tau}^{r} = (\partial^{2} \alpha^{r} / \partial \delta^{2})_{\tau,x}, \ \alpha_{\tau\tau}^{r} = (\partial^{2} \alpha^{r} / \partial \tau^{2})_{\delta,x}, \ \alpha_{\delta\tau}^{r} = (\partial^{2} \alpha^{r} / \partial \delta \partial \tau)_{x}, \ \delta = \delta(x), \ \tau = \tau(x)$] <i>Ideal gas properties</i>		
Internal Energy	$U^0/RT = \sum_{i=1}^l x_i \tau_i (\partial \alpha_i^0 / \partial \tau_i)$	
Enthalpy	$H^0/RT = 1 + \sum_{i=1}^{l} x_i \tau_i (\partial \alpha_i^0 / \partial \tau_i)$	
Entropy	$S^0/R = \sum_{i=1}^l x_i \tau_i (\partial \alpha_i^0 / \partial \tau_i) - \alpha^0$	
Isochoric heat capacity	$C_V^0 / R = -\sum_{i=1}^l x_i \tau_i^2 (\partial^2 \alpha_i^0 / \partial \tau_i^2)$	
Real gas properties		
Compressibility factor	$Z = pV/RT = 1 + \delta \alpha_{\delta}^{r}$	
Fugacity of component i	$f_i = x_i \rho RT \exp \left(\frac{\partial (n \alpha^r)}{\partial n_i} \right)_{T, nV, n_i}$	
Internal energy	$U/RT = (U^0/RT) + \tau \alpha_{\tau}^r$	
Enthalpy	$H/RT = (H^0/RT) + \tau \alpha_{\tau}^{r} + \delta \alpha_{\delta}^{r}$	
Entropy	$S/R = (S^0/R) + \tau \alpha_{\tau}^{r} - \alpha^{r}$	
Isochoric heat capacity	$C_V/R = (C_V^0/R) - \tau^2 \alpha_{\tau\tau}^r$	
Isobaric heat capacity	$C_{\nu}/R = (C_{\nu}/R) + ([1 + \delta\alpha_{\delta}^{r} - \delta\tau\alpha_{\delta\tau}^{r}]^{2}/[1 + 2\delta\alpha_{\delta}^{r} + \delta^{2}\alpha_{\delta\delta}^{r}])$	
Speed of sound	$w^2 M/RT = (C_p/C_V)[1+2\delta\alpha_{\delta}^{r}+\delta^2\alpha_{\delta\delta}^{r}]$	A North Street S

 Reducing parameter of the pure fluid equation ≠ reducing functions of the mixture
 pseudo-critical parameter τ, δ

composition dependence

$$\tau(\mathbf{x}) = \frac{T_n(\mathbf{x})}{T}, \, \delta(\mathbf{x}) = \frac{V_n(\mathbf{x})}{V}$$

 \rightarrow as x_i approaches 1

$$T_{n}(\mathbf{x}) \to T_{n,i}, V_{n}(\mathbf{x}) \to V_{n,i}$$

or
$$\tau(\mathbf{x}) \to \tau_{i}, \delta(\mathbf{x}) \to \delta_{i}$$

Linear mixture model

• Linear mixture model

Inear combinations of the pure fluid parameters

$$T_{n}(\mathbf{x}) = \sum_{i=1}^{l} x_{i}T_{n,i}, \quad V_{n}(\mathbf{x}) = \sum_{i=1}^{l} x_{i}V_{n,i}$$

▶ departure function ∆α^r omitted
 ▶ no adjustable parameters

• 1,1,1,2-tetrafluoroethane(R-134a) +difluoromethane(R-32) \rightarrow close behavior of an ideal solution VLE : excellent results (Fig.1a) Density in subcritical range (Fig.2a) → vapor, liquid density : good agreement Density in supercritical range (Fig.2b) →larger deviation Isochoric heat capacity

 $\rightarrow \pm 1\%$ (about the experimental uncertainty)

• water+ammonia

mixture of polar components showing large mixing effects, wide two-phase region

► VLE (Fig.1b)

→dew curve : well

*high conc. in the vapor phase \rightarrow ideal at lower pressures

bubble curve : large deviation

- Density (Fig.2c)
 - **→**-1% ~ +3% deviation
- Excess enthalpy (Fig.3c)

→poor representation : related to VLE

ethane+carbon dioxide

 azeotropic behavior

 VLE (Fig.1c)

 incorrect prediction

 Isochoric heat capacity (Fig.3b)

 less accurate
 >2% deviation outside of the critical region

Fig. 1. Experimental and calculated VLE state points from the linear mixture model. (a) R-134a + R-32: ○, ● Holcomb et al. [6]. (b) Water + ammonia: ○, ● Smolen et al. [26]. (c) Ethane + carbon dioxide: ○, ● Fredenslund and Mollerup [3].

Fig. 2. Density deviations between experimental data and densities calculated from the linear mixture model. (a) Subcritical R-134a+R-32 (T = 333.15 K, $x \approx 0.5$): ×, \bigcirc Kleemiss [9]; \blacksquare Magee and Haynes [15]. (b) Supercritical R-134a+R-32 (363 < T (K) < 413, $x \approx 0.5$): ×, \bigcirc Kleemiss [9]. (c) Liquid water+ammonia (273 < T (K) < 333, p < 40 MPa): \bigcirc Harms-Watzenberg [5].

Fig. 3. Deviations between measured caloric properties and values calculated from the linear mixture model. (a) Liquid R-134a+R-32 C_{ν} ($x \approx 0.5$): \Box Magee and Haynes [15]. (b) Isochoric heat capacity for ethane + carbon dioxide: \Diamond Magee [13]. (c) Excess enthalpy in liquid water + ammonia (T = 298.15 K, p = 5 MPa): \bullet Staudt [28].

• Modification of the reducing functions

$$T_{n}(\mathbf{x}) = \sum_{i=1}^{l} \sum_{j=1}^{l} x_{i} x_{j} T_{n,ij} \qquad T_{n,ij} = k_{T,ij} \frac{1}{2} \left(T_{n,ii} + T_{n,jj} \right)$$
$$V_{n}(\mathbf{x}) = \sum_{i=1}^{l} \sum_{j=1}^{l} x_{i} x_{j} V_{n,ij} \qquad V_{n,ij} = k_{V,ij} \frac{1}{2} \left(V_{n,ii} + V_{n,jj} \right)$$

k_{T,ij}, *k_{V,ij}*: adjustable parameter
 Effect of varying *k_{T,ij}*, *k_{V,ij}* →VLE of ethane+carbon dioxide (Fig.4) (*k_{T,ij}* > *k_{V,ij}*)
 →C_v: 1.4% deviation (Fig.5)

Fig. 4. Influence of the parameters $k_{T,12}$ and $k_{V,12}$ in the quadratic reducing function on the VLE of ethane+carbon dioxide: \bigcirc , \bigcirc Fredenslund and Mollerup [3]; solid line: $k_T = 1.0$, $k_V = 1.0$.

Fig. 5. Deviations between ethane+carbon dioxide isochoric heat capacities and values calculated from the Helmholtz energy model with $k_{T,12} = 0.9$: \Diamond Magee [13].

Modification by Tilner-Roth
 supplement the quadratic expression with β_T, β_V

$$T_{n}(\mathbf{x}) = x_{1}^{2}T_{n,1} + x_{2}^{2}T_{n,2} + 2x_{2}(1 - x_{2}^{\beta_{T}})T_{n,12}$$
$$V_{n}(\mathbf{x}) = x_{1}^{2}V_{n,1} + x_{2}^{2}V_{n,2} + 2x_{2}(1 - x_{2}^{\beta_{V}})V_{n,12}$$

effect of exponents on the shape (Fig.6)
 influence of T_{n,12} or V_{n,12}
 asymmetric with respect to composition
 Additional flexibility for tuning of the mixture model

Fig. 6. Influence of the exponent β_T on the function $x(1 - x^{\beta_T})$.

- Modification by Lemmon
 - modified the linear reducing function

$$T_{n}(\mathbf{x}) = \sum_{i=1}^{l} x_{i}T_{n,i} + \sum_{i=1}^{l-1} \sum_{j=i+1}^{l} x_{i}^{\beta_{ij}} x_{j}\zeta_{ij}$$
$$V_{n}(\mathbf{x}) = \sum_{i=1}^{l} x_{i}V_{n,i} + \sum_{i=1}^{l-1} \sum_{j=i+1}^{l} x_{i}x_{j}\xi_{ij}$$

 ζ_{ij},ξ_{ij},β_{ij} : modify the shape of the reducing parameter
 β_{ij}=1, ζ_{ij} = (T_{n,i} + T_{n,j})(k_{T,ij} −1) ξ_{ij} = (V_{n,i} + V_{n,j})(k_{V,ij} −1)

→ for ethane+CO₂, ζ_{ij} =-67.4K ($k_{T,ij}$ =0.89)

Departure function

• Departure function

$$\Delta \alpha^{r}(\tau, \delta, \mathbf{x}) = \sum_{i=1}^{l-1} \sum_{j=i+1}^{l} x_{i} x_{j} \Delta \alpha_{ij}(\tau, \delta, x_{i}, x_{j})$$

- only to mixture properties, no effect at the pure fluid limits
- magnitude of departure function
 - \rightarrow generally one order smaller than the residual α^{r}
- modeling : regression analysis by Wagner
 - →a set of of experimental data→lowest standard deviation→bank of terms→subset of term for $\Delta \alpha_{ij}$

optimization : modified Marquardt-Fletcher algorithm

• Introduction an exponent γ in the departure function for a binary system

$$\Delta \alpha^{r}(\tau, \delta, x) = x_{2} \left(1 - x_{2}^{\gamma} \right) \Delta \alpha_{ij}(\tau, \delta, x_{i}, x_{j})$$

→asymmetric influence

→very effective for simple system, R-152+R134a

reduce the number of terms in the departure function

→applied only to binary systems to date

► For water+ammonia,

$$x\delta^{n_k}\tau^{m_k}\exp(-\delta^{e_k})$$
 and $x^2\delta^{n_k}\tau^{m_k}\exp(-\delta^{e_k})$

• Results for R-134a+R-32

Five-term departure function

$$\Delta \alpha^{r}(\boldsymbol{\tau}, \boldsymbol{\delta}, \mathbf{x}) = x \left(1 - x^{\gamma} \right) \left[\sum_{k=1}^{2} c_{k} \delta^{n_{k}} \boldsymbol{\tau}^{m_{k}} + \sum_{k=3}^{5} c_{k} \delta^{n_{k}} \boldsymbol{\tau}^{m_{k}} \exp \left(-\delta^{e_{k}} \right) \right]$$

▶ Fig.7 (cf. Fig.2b)

 \rightarrow density at liquid & vapor region : $\pm 0.1\%$

 \rightarrow density at critical region : -6 ~ $\pm 0.4\%$

- Results for water+ammonia
 - 14-term departure function : 19 adjustable parameters

$$\frac{\Delta \alpha^{r}(\tau, \delta, \mathbf{x})}{x(1-x^{\gamma})} = c_{1} \delta^{n_{1}} \tau^{m_{1}} + \sum_{k=2}^{6} c_{k} \delta^{n_{k}} \tau^{m_{k}} \exp(-\delta^{e_{k}}) + x \sum_{k=7}^{13} c_{k} \delta^{n_{k}} \tau^{m_{k}} \exp(-\delta^{e_{k}}) + c_{14} x^{2} \delta^{n_{14}} \tau^{m_{14}} \exp(-\delta^{e_{14}})$$

Fig.8 (cf. Fig.1b, Fig.3c)
 improved representation

Fig. 8. Vapor-liquid equilibrium and excess enthalpy of water + ammonia. (a) VLE data: \bigcirc Rizvi and Heidemann [21]; \bigcirc Sassen et al. [24]. (b) Excess enthalpies (298 < T (K) < 373, 5 < p (MPa) < 12): \bigcirc Staudt [28]; solid line: Helmholtz energy model including departure function; dashed line: linear mixture model.

• Generalized departure function

$$\Delta \alpha^{\mathrm{r}}(\tau, \delta, \mathbf{x}) = \sum_{i=1}^{l-1} \sum_{j=i+1}^{l} x_{i} x_{j} F_{ij} \Delta \alpha_{ij}(\tau, \delta)$$
$$\Delta \alpha_{ij}(\tau, \delta) = \sum_{k=1}^{10} c_{k} \delta^{n_{k}} \tau^{m_{k}}$$

 \triangleright c_k , n_k , m_k : fixed the same for all mixture

- *F_{ij}*, ζ_{ij}, ξ_{ij}, β_{ij} : adjustable parameters from (*p*,*V*,*T*,*x*)
 0.2% in density, 1% in heat capacities
 - \rightarrow 1-2% bubble point pressure at critical temp.
 - →5-10% bubble point pressure at critical temp. father apart

• Results

- propane + *n*-butane : Fig.10
 - →less than 0.04% average absolute deviation in density
 - →0.4% average absolute deviation in bubble point pressure
- Uncertainty of the equation reported
 - →0.2% in density
 - \rightarrow 1% in heat capacities
- Fig.11 : ternary refrigerant mixture

Fig. 10. The mixture propane + *n*-butane. (a) Deviations between liquid densities and values predicted from the Helmholtz energy model: • Parrish [16] (283 < T (K) < 333, 0.15 < $x_{\text{propane}} < 0.75$); • Magee [14] (244 < T (K) < 400, $x_{\text{propane}} \approx 0.6$). (b) Deviations between bubble point pressures and values predicted from the Helmholtz energy model: • Kay [8] (332 < T (K) < 425).

Fig. 11. Deviations between experimental densities for the ternary system R-134a + R-125 + R-32 and values predicted from the Helmholtz energy model: • Kleemiss [9] (243 < T (K) < 353); • Magee and Haynes [15] (200 < T (K) < 400).

Conclusions

- EOS for mixture in terms of the Helmholtz energy has been developed and applied to several fluid systems by two different research groups
- By Tillner-Roth, model of single binary systems for which comprehensive accurate data are available
- By Lemmon, generalized model was presented which accurately predicts thermodynamic properties of mixtures
- Further research for more nonideal systems and complex multicomponent mixtures