The simultaneous prediction of vapor-liquid equilibrium and excess enthalpy

Kwon, Jung Hun

Contents

- A comparison of cubic EOS mixing rules for the simultaneous description of excess enthalpies and VLE Hasan Orbey , Stanley I. Sandler (1996)
- Calculation of excess enthalpies with the CCOR EOS
 H.-M Lin , M.-J Lee (1994)
- [3] A new method to predict thermodynamic properties of mixtures by means of a cubic EOS YOSHINORI ADACHI AND HIDEZUMI SUGIE (1998)
- [4] Compilation of group-contribution of VLE and excess enthalpy

Kazuo Kojima (1997)

[1] The simultaneous correlation VLE and H^E

Hasan Orbey, Stanley I. Sandler (1996)

An attempt to represent simultaneously VLE and H^E behavior

Non ideal binary mixtures

► Representational method of VLE and H^E

- 1 The activity coefficient model
- (2) Equation of state
- Cubic EOS and various types of mixing rules
 - (a) **VLACM** (van Laar activity coefficient) model
 - (b) **VDWEOS** (van der Waals EOS) model
 - (c) **WSEOS** (Wong Sandler) model
 - (d) \boldsymbol{HVOS} (Orbey Sandler) model

The comparison of models

- Filled circles : Experimental data
- The dotted lines : VLACM
- The solid line : VDWEOS
- The long-dashed line : WSEOS
- The short-dashed line : HVOS

Correlation of the excess enthalpy of 2-propanol + water system at 298.15K

The prediction of VLE and H^E

- Filled circles : Experimental data
- The dotted lines : VLACM
- The solid line : VDWEOS
- The long-dashed line : WSEOS
- The short-dashed line : HVOS

Prediction of the excess enthalpy of acetone + water system at 293.15K and 305.15K

Exception

- Filled circles : Experimental data
- The dotted lines : VLACM
- The solid line : VDWEOS
- The long-dashed line : WSEOS
- The short-dashed line : HVOS

Prediction of the excess enthalpy of the methanol +benzene system at 298.15K with parameters obtained from the correlation of VLE data at 293.15K

- Filled circles :298.15K data
- Filled triangles : 348.15K data
- The dotted lines : VLACM
- The solid line : VDWEOS
- The long-dashed line : WSEOS
- The short-dashed line : HVOS

Excess enthalpy of 2-propanol+ water system obtained from simultaneous correlation with VLE data at 298.15K, by prediction at 348.15K with the same parameter system at 293.15K and 305.15K

Conclusion

- All of the EOS models are good or better than activity coefficient models for simultaneous correlation and prediction of VLE and H^E properties.
- (2) Fitting parameters used here only to excess enthalpy data or VLE data are compatible but another property did not give satisfactory results.
- (3) The VDWEOS model led to extrapolations of reasonable accuracy for the excess enthalpy and VLE at another temperature.

[2] Calculation of H^E with the CCOR EOS

H.-M Lin, M.-J Lee (1994)

The Cubic chain - of - rotators (CCOR) equation of state

$$P = \frac{RT[1+0.77(b/V)]}{V-0.42b} + C^{R} \left[\frac{0.055RT(b/V)}{V-0.42b} \right] - \frac{a}{V(V+c)}$$
$$- \frac{bd}{V(V+C)(V-0.42b)}$$

① The first term

: simplification of the Carnahan-Starling equation for a hard-sphere fluid

2 The second term

: contribution to pressure due to the rotational motion of a polyatomic molecule

③ The last two term : the attractive force contributions

CCOR EOS (Lin et al., 1983; Kim et al., 1986)

1 Applications

: To calculate excess enthalpies for a variety of binary mixtures

② Characteristics

- Non-polar/polar and polar/polar system
- The conditions in both gas and liquid phase

Deviations

- Mixtures containing long-chain molecules such as n-hexadecane
- Asymmetric mixture

Exception of CCOR EOS

• System : methanol + chlorobenzene [AAD = 48 %]

ethanol + chlorobenzene [AAD = 63.1 %]

Polar -1 polar mixtures at atmospheric pressure

Mixture (1) + (2)	Г (К)	k _{aij}	AAD (%)	Bias (%)	Data pts.	Source "
$CCIF_2 - CCI_2F + CH_3 - CF_3$	298	0.0268	1.9	-0.6	15	1
CCIF ₂ -CCI ₂ F + CHCl ₂ -CH ₂ CI ^h	298	0.0564	2.8	-1.1	15	1
CCIF ₂ -CCl ₂ F + CHCl ₂ -CHCl ₂	298	0.0212	5.0	-0.4	14	1
Methanol b + chlorobenzene b	298	-0.0838	48.0	- 29.6	18	2
Ethanol [*] + chlorobenzene [*]	298	-0.0475	63.1	- 29.2	17	2
Ethanol ^h + acetone ^b	298-323	0.0309	9.7	2.2	25	3
1-Propanol ^b - methyl butanoste	298	0.0277	6.9	-1.8	15	4
I-Butanol ^b + methyl butanoate	298	0.0239	4.5	-2.4	17	4
I-Butanol ^b + propyl acetate ^b	298	0.0299	7.4	- 2.8	21	4
I-Pentanol ^b + methyl butanoate	298	0.0376	1.0	0.7	17	4
I-Pentanol + propyl acetate b	298	0.0414	4.0	1.5	23	4
I-Hexanol ^b + propyl acetate ^b	298	0.0397	4.1	1.6	21	4
I-Heptanol + propyl acctate	298	0.0660	1.1	0.4	`17	4
1-Octanoi ^b + propyl acetate ^b	298	0.0612	3.4	-2.j	19	4
Acetonitrile b + chlorobenzene b	298	0.0292	3.9	-1.8	16	2

"1, Dohnal and Patterson (1984); 2, Nagata and Tamura (1986); 3, Nicolaides and Eckert (1978); 4, Fernandez et al. (1985).

^b Using optimal A_1 and A_2 as reported by Guo et al. (1985a).

Conclusion

- (1) The CCOR equation was applied to calculate excess enthalpies for a variety of mixtures in both gas and liquid states.
- (2) These systems include polar/non-polar and polar/polar mixtures.
- (3) However, the equation did not work as well for highly asymmetric mixtures.
- (4) The substantial discrepancies between calculated and experimental data were obtained for some system.

[3] The prediction of H^E by mixing rules

YOSHINORI ADACHI AND HIDEZUMI SUGIE (1998)

- 1 The effect of the binary interaction parameters of the modified conventional mixing rules on excess thermodynamic properties of mixture.
- 2 A new method to predict thermodynamic properties of mixtures by means of a cubic EOS.
- (3) The Modified Conventional Mixing Rules

$$a_m = \sum \sum x_i x_j (1 - k_{ij}) (a_i a_j)^{0.5}$$

$$k_{ij} = l_{ij} + m_{ij}(x_i - x_j)$$

(4) Excess molar properties

$$M^{E} = -M' + \sum x_{i}M'$$

13

The Modified Conventional Mixing Rule

- circles : Experimental data
- - (VDW with l_{ij} =-0.253 and m_{ij} =-0.060)
- – – : conventional mixing rules

(VDW with k_{ij} =-0.269)

Excess molar enthalpy of water- acetone system at 323.15K and 0.101325MPa

Thermodynamics and properties lab

Conclusion

 The modified conventional mixing rules give satisfactory excess enthalpy and excess volume predictions even for strongly non-ideal solution.

 (2) The calculated result for H^E are more sensitive to the binary interaction parameters than those for V^E. 16

[4] Group Contribution prediction of VLE and H^E

Kazuo Kojima (1997)

- 1. VLE calculations
 - At low temperature ⇒ Activity coefficient equations
 - At high temperature ⇒ Equations of state
- 2. Group Contribution Methods
 - ASOG model, UNIFAC model, ...
 - The group interaction parameters can be estimated by regressing available VLE data.
- 3. The activity coefficient of component *i*

 $\ln \gamma_i = \ln \gamma_i^{COM} + \ln \gamma_i^{RES}$

1 Combinatorial part : the difference in size and shape of molecule

2 Residual part : intermolecular force

ASOG model

$$\ln \gamma_i^{COM} = 1 - \frac{S_i}{\sum_j^N S_j x_j} + \ln \frac{S_i}{\sum_j^N S_j x_j}$$

$$\ln \gamma_i^{RES} = \sum_k (\ln \Gamma_k - \ln \Gamma_k^{(i)})$$

$$\ln \Gamma_{k} = -\ln \sum_{l=1}^{m} X_{l} a_{l,k} + (1 - \sum_{l=1}^{m} \frac{a_{l,k} X_{l}}{\sum_{i=1}^{m} a_{i,k} X_{i}})$$

$$X_{l} = \frac{\sum_{i=1}^{N} x_{i} v_{k,i}}{\sum_{i=1}^{N} x_{i} \sum_{l=1}^{m} v_{l,i}}$$

$$a_{k,l} = \exp(m_{k,l} + \frac{n_{k,l}}{T})$$

Group interaction parameters

Available ASOG group interaction parameters

[temperature range : 298 ~ 423K]

Group interaction parameters

Available modified UNIFAC (Dortmund) group interaction parameters

[temperature range : 293~ 398K]

The ASOG model for predicting the excess enthalpy

Available ASOG-H^E group interaction parameters

[temperature range : 288~ 348K]

Conclusion

- (1) Group contribution methods (ASOG, UNIFAC, modified UNIFAC) for predicting the vapor-liquid equilibrium and the excess enthalpy for mixtures of non-electrolyte solutions are presents.
- (2) Group contribution methods can be used in absence of experimental data.
- (3) The group contribution method have gained widespread popularity in chemical engineering computations.