Statistical Associated-Fluid Theory

Kwon, Cheong Hoon

Thermodynamics and Properties Lab. Dept. of Chemical and Biological Engineering, Korea Univ

Motives

- Molecular association profoundly affects phase behavior and transport properties of fluid mixtures.
 - Supercritical conditions and high pressure systems
 - Phase equilibria of polymers
 - Phase equilibria of associating mixtures (alcohols, acids)
 - Simultaneous representation of VLE and H^E
- There have been many attemps to model the association effects on fluid phase equilibria.

 The Statistical Associated-Fluid Theory (SAFT) is based on the first – order perturbation theory of Wertheim (1987).

EOS Models – Historical Review

The Classes of EOS Models

- **Based on Semi-Classical Partition Function**
 - Cubic Equation of State and Other van-der Waals based EOS
 - Radial Distribution Function Approaches
 PHCT (1978), PACT (1985)
 SAFT (Huang and Radosz, Chapman, 1990)
- Based on Lattice Statistical-mechanical theory
 - **NLF -EOS proposed by You, Yoo and Lee (1993)**
 - Hydrogen Boding proposed by Veytzman (1990) + Lattice EOS

Model of hard spheres with a single associating site A

Wrong Distance

Wrong Orientation

Site-Site Attraction

Three steps to form chain molecules and association complexes

SAFT EOS

: Huang and Radosz, Chapman (1990)

: SAFT EOS can be represented as a sum of Helmholtz energies

SAFT EOS

EOS

 $Z = 1 + Z_{hs} + Z_{chain} + Z_{disp} + Z_{assoc}$

Hard Sphere Term

$Z_{hs} = \frac{6}{\pi N_A \rho} \left[\frac{\xi}{1 - \xi} \right]$	$\frac{\xi_0\xi_3}{-\xi_3} + \frac{3\xi_1\xi_2}{(1-\xi_3)^2} + \frac{\xi_1\xi_2}{(1-\xi_3)^2} + \frac{\xi_1\xi_2}{(1-\xi_2)^2} + \frac$	$\frac{(3-\xi_3)\xi_2^3}{(1-\xi_3)^3} \right]$	$\xi_k = (\pi N_A \rho / 6) \sum_i x_i r_i (d_i)^k$
--	--	--	---

Chain Term

$$Z_{chain} = \sum_{i} x_{i} (1 - r_{i}) L(d_{i}) \qquad L(d_{i}) = \frac{2\xi_{3} + 3d_{i}\xi_{2} - 4\xi_{2}^{3} + 2d_{i}\xi_{2}^{2} + 2\xi_{3}^{3} + d_{i}^{2}\xi_{2}^{2}\xi_{3} - 3d_{i}\xi_{2}\xi_{3}^{2}}{(1 - \xi_{3})(2 - 4\xi_{3} + 3d_{i}\xi_{2} + 2\xi_{3}^{2} + d_{i}^{2}\xi_{2}^{3} - 3d_{i}\xi_{2}\xi_{3})}$$

Dispersion Term

 $Z_{disp} = r \sum_{n} \sum_{m} m D_{nm} (u / kT)^{n} (\xi_{3} / \xi_{3 cp})^{m}$

Association Term

$$Z_{assoc} = \rho \sum_{i} x_{i} \left[\sum_{i} \left(\frac{1}{X} x_{i} - \frac{1}{2} \right) \partial X_{i}^{s_{i}} / \partial \rho \right]$$
$$X^{s_{i}} = \left(1 + N_{A} \sum_{j} \sum_{Y_{j}} x_{j} \rho X^{Y_{j}} W_{ij} \right)^{-1}$$

SAFT prediction

Prediction [vdW1 and vf mixing rules]

Comparison

[Pure Component Parameters]

EOS Mod	els	Parameters	T Dependency	Procedure To Get Parameters		
* Non-specij	* Non-specific interaction					
SAFT		$r_i, \mathcal{E}_i, \sigma_i, e$	Independent	Using vapor pressure and liquid density		
NLF-HB		r_i, \mathcal{E}_{ii}	Dependent	Using vapor pressure and liquid density		
* Specific interaction (Hydrogen bonding)						
SAFT		$\boldsymbol{\varepsilon}^{S_iY_j}, \boldsymbol{\kappa}^{S_iY_j}$	Independent	Required for individual species and additional bond formation		
NLF-HB		U^{HB}, S^{HB}	Independent	Depends on the type of hydrogen bond		

Comparison

[Mixing rule and binary interaction parameters]

SAFT

Basis of Mixing Rule Vdw / VF mixing rule Results are affected by the choice of mixing rule

No. of Binary Parameters

 $1 (k_{ij})$

Cross Association Additional cross association parameters (2)

NLF-HB

Do not require empirical mixing rule

 $1(k_{ij})$

Can be assumed(2)

Computational Aspects

		PVT Behavior	Computation speed	Remark
MIN S	SAFT	Complex	Slow	Extra computation time for balance equation solving
111	NLF-HB	Relatively simple	Relatively fast	when two or more types of association

Conclusions

The Statistical Associated-Fluid Theory (SAFT) is based on the first – order perturbation theory of Wertheim (1987).

- The essences of this theory is that the Helmholtz energy is given by a sum of expressions to account not only for the effects of repulsion and dispersion forces but also for association and/or solvation.
- The SAFT EOS has been applied successfully to describe thermodynamic properties and phase behavior of pure fluids and fluid mixtures containing small, large, non-associating and associating molecules, including supercritical and near-critical solutions of polymers.
- However, the SAFT EOS cannot be used for liquid-liquid equilibrium in aqueous systems at normal temperature.

References

- John M.Prausnite; Rudiger N.Lichtenthaler; Edmundo Gomes de Azevedo, "Molecular thermodynamics of Fluid-Phase Equilibriua", 3rd ed., Prentice Hall
- Walter G.Chapman; Keith E.Gubbims; George Jackson; Maciej Radosz, New Reference Equation of State for Associating Liquids, Ind.Eng. Chem.Res.1990,29,1709-1721.
- Stanley H.Huang, Maciej Radosz, Equation of State for Small, Large, Polydasperse, and Associating Molecules : Extension to Fluid Mixtures, Ind.Eng. Chem.Res.1991,30,1994-2005.
- M.S.Wertheim, Fluids with Highly Directional Attractive Forces. I .Statistical Thermodynamics, Journal of Statistical Physics, 1984, 35, 1/2.
- M.S.Wertheim, Fluids with Highly Directional Attractive Forces. II. Thermodynamic Perturbation Theory and Integral Equations, Journal of Statistical Physics, 1984, 35, 1/2.
- M.S.Wertheim, Fluids with Highly Directional Attractive Forces. III. Multiple Attraction Sites, Journal of Statistical Physics, 1986, 42, ³/₄
- Jeong Won Kang, Ju Ho Lee, Ki-Pung Yoo and Chul Soo Lee "Evaluation of equations of state applicable to polymers and complex systems" Fluid Phase Equilibria, vol. 194-197 (2002) 77-86