Excess Enthalpies for the Binary Systems of N-Alkane + 1-Alkanol at 313.15 K

Kwon, Cheong Hoon

Introduction

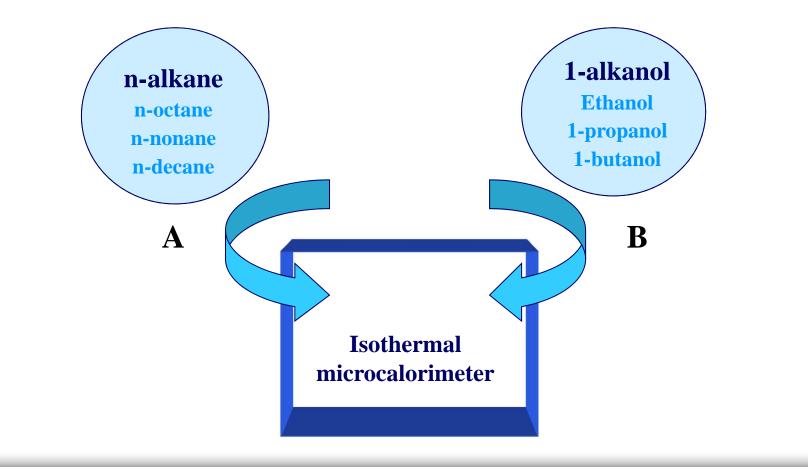
The Needs of Excess Enthalpy

- Excess enthalpy data of binary mixture are important in understanding the nature of interactions between the molecules.
- Excess enthalpy data plays an important role in chemical engineering process design and operation.

System : N-alkane + 1-alkanol

► Temperature condition : 313.15K

Types of Calorimeter


Three types of calorimeter

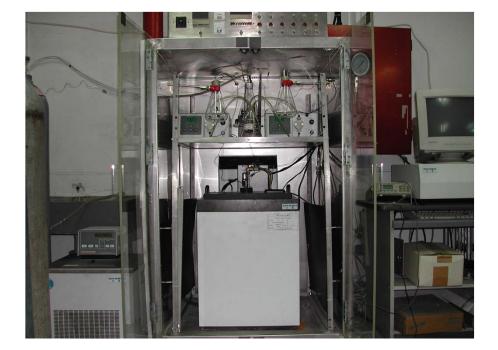
: Batch calorimeter, Displacement calorimeter, Flow calorimeter

► Flow calorimeter

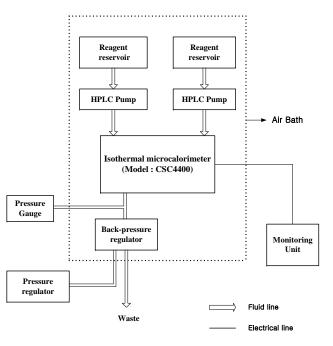
To make measurements over a wide range of pressure and temperature conditions The measurements of the excess enthalpy can be made for gases as well as liquids To require large amounts of chemicals

Isothermal Microcalorimeter (IMC)

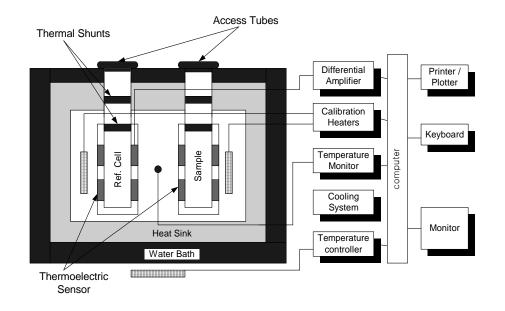
► Model CSC 4400 (Calorimetry Sciences Corporation)

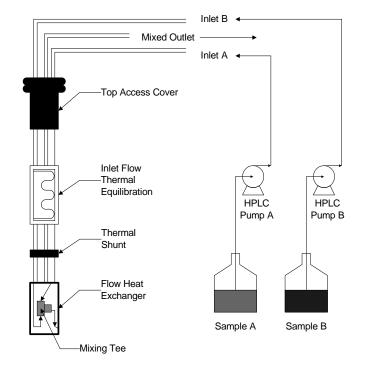

Pump: a set of HPLC pump (Model Acuflow Series II)

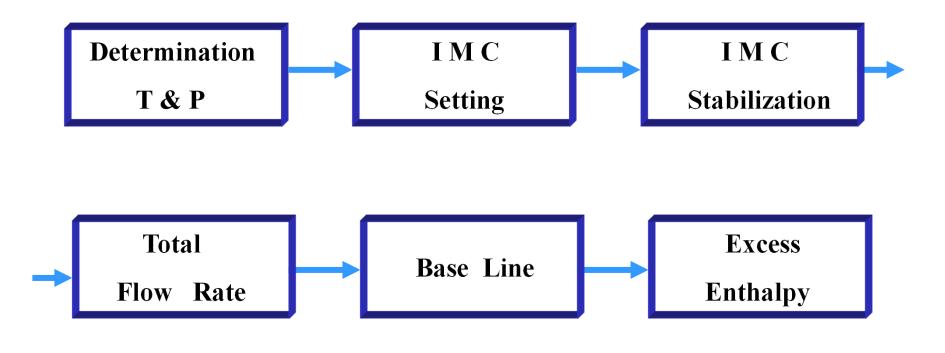
Accuracy of flow rate : $\pm 2\%$


Auxiliary equipments

- ► Air bath
- ► Back pressure regulator
- ► Control gas : compressed helium gas
- Circulator (constant temperature)

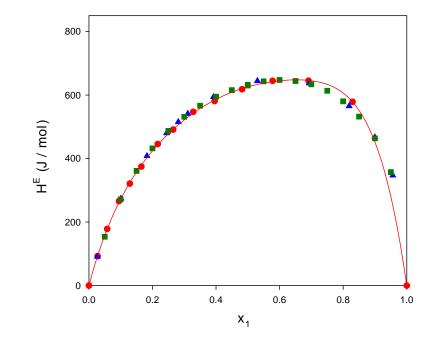

Experimental apparatus


Block diagram of experimental apparatus


Block diagram of IMC

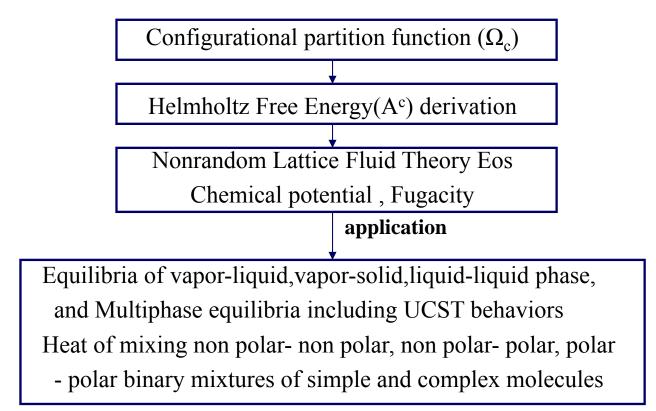
Schematic diagram of flow mixing cell

Comparison literature data and experimental data


To test the accuracy of calorimeter measurements, **System : Octane + Ethanol [at 298.15K]**

Redlich-Kister Correlation

$$H^{E} / J \cdot mol^{-1} = x(1-x) \sum_{i=1}^{k} A_{i} (1-2x)^{i-1}$$


Where, x is the mole fraction of component Ai is the adjustable parameter

Redlich-Kister Correlation

Comparison experimental data H^E and literature value from n-octane + ethanol at 298.15K. •, This work ; , Ramalho R.S., Ruel M.Can. J. (1968); ■, Zhu S., Shen S., Benson G..C., Lu B.C.-Y (1994)

NLF-HB Theory(1)

Partition Function

In a three-dimension lattice,

- ► The coordination number : z =10
- Unit cell volume : $V_H = 9.75 \text{ cm}^3/\text{mol}$
- Effective surface area : $zq_i = (z_i 2)r_i + 2$

NLF-HB Theory (3)

Configurational partition function (Ω_c)

$$\Omega = \Omega_{PHYS} \Omega_{HB}$$

- Ω_{PHYS} : [Physical term]... You et al. (1994)
- **\Omega_{HB}** : [Chemical term] ... Extension of Veytsman statistics (Park et al. 2001)
 - Physical term

$$\Omega c = g_R g_{NR} \exp(-\beta U^c)$$

$$\Omega c = \left[\frac{N_r!}{\Pi N_i!}\right] \left[\frac{N_q!}{N_r!}\right]^{z/2} \left[\frac{\Pi N_{ii}^o \Pi \left[\left(\frac{N_{ij}}{2}\right)!\right]^2}{\Pi N_{ii}! \Pi \left[\left(\frac{N_{ij}}{2}\right)!\right]^2}\right] \exp(-\beta U^c)$$

NLF-HB Theory (4)

Hydrogen bonding term

$$\Omega_{HB} = \prod_{k=1}^{M} \frac{N_{k0}^{H0}!}{N_{k0}^{H}!} \prod_{j=1}^{N} \frac{N_{0l}^{H0}!}{N_{0l}^{H}!} \prod_{k=1}^{M} \prod_{l=1}^{N} \frac{N_{kl}^{H0}!}{N_{kl}^{H}!} (P_{kl})^{(N_{kl}^{H} - N_{kl}^{H0})} \exp(-\beta A_{kl}^{H} N_{kl}^{H})$$

Connection of thermodynamic function with configurational function

 $\beta A^c = -\ln \Omega^c$

The molar configurational internal energy for mixture

$$\frac{\beta U^{c}}{N} = -\left(\frac{T}{N}\right)\left(\frac{\partial\beta A^{c}}{\partial T}\right)_{N_{0},N_{i}}$$

Expression of excess enthalpy

$$H^{E} = (U^{C} + PV)_{mixture} - \sum x_{i}(U^{C} + PV)_{pure,i}$$

NLF-HB Theory (5)

Physical Parameters

Coordination number : z = 10

Lattice volume : $V_H = 9.75 \ cm^3/mol$

Pure parameters (r_i, \mathcal{E}_{ii}) :

 $r_{i} = r_{a} + r_{b}(T - T_{0}) + r_{c}[T \ln(T_{0}/T) + T - T_{0}]$ $\varepsilon_{ii} / k = \varepsilon_{a} + \varepsilon_{b}(T - T_{0}) + \varepsilon_{c}[T \ln(T_{0}/T) + T - T_{0}]$

NLF-HB Theory(6)

The binary interaction parameters

•
$$\mathcal{E}_{ij} = (\mathcal{E}_{ii}\mathcal{E}_{jj})^{1/2}(1-k_{ij})$$
 $k_{ij} = A + B/T$

Hydrogen Bonding Parameters

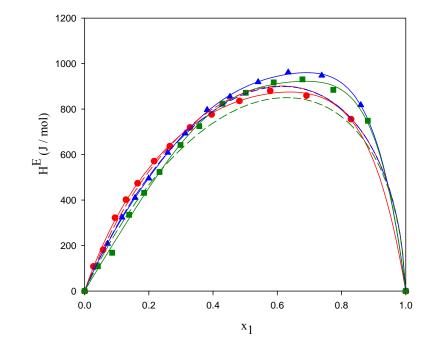
•
$$A_{kl}^{HB} = U_{kl}^{HB} - TS_{kl}^{HB}$$

	${U}_{kl}$	S_{kl}
alcohols	$-25.1 \times 10^{3} J/mol$	– 26.5 <i>J / mol</i>
water	$-15.5 \times 10^3 J/mol$	-16.6 <i>J / mol</i>

Hydrogen bonding parameters for NLF-HB EOS

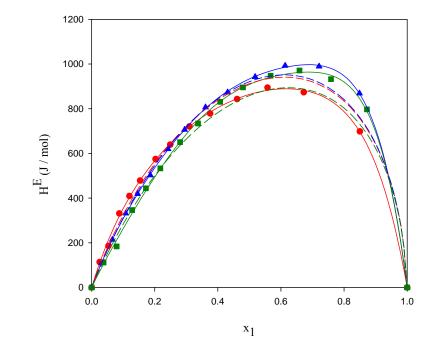
Results & Discussions (1)

	A1	A2	A3	A4	A5	s (J/mol)
n-Octane + Ethanol	3377.03	-857.84	1847.66	-1332.31	1028.53	8.62
n-Octane+1-Propanol	3587.15	-1304.61	1617.67	-2420.27	1896.63	4.13
n-Octane + 1-Butanol	3494.17	-1143.36	1211.19	-3068.19	1931.68	12.58
n-Nonane + Ethanol	3456.40	-842.37	1754.16	-846.86	1107.78	9.15
n-Nonane+1-Propanol	3733.21	-1303.01	1850.12	-2333.66	1805.08	3.51
n-Nonane + 1-Butanol	3635.14	-1200.29	1548.91	-2829.08	1732.21	11.19
n-Decane + Ethanol	3635.22	-1133.00	1659.25	-366.99	1802.66	5.10
n-Decane + 1-Propanol	3917.27	-1373.34	2071.94	-2214.13	1933.90	3.28
n-Decane + 1-Butanol	3844.24	-1192.97	1984.59	-2961.96	1422.91	12.97

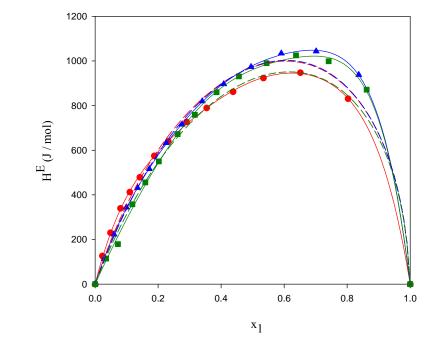

Coefficients, A_K, and Standard Deviation, s, for the Representation of H^E

Results & Discussions (2)

2	ea	еъ	ec	ra	ħ	ŕc	Range (K)
n-Octane	100.590	.0356	0243	14.594	0019	.0075	273-533
n-Nonane	101.279	.0480	.0081	16.171	0027	.0060	373-575
n-Decane	101.689	.529	.0125	17.805	0034	.0057	368-598
Ethanol	84.918	.1791	.1674	4.945	.0019	0009	293-473
1-Propanol	90.291	.1362	.0827	6.523	.0001	0086	273-537
1-Butanol	89.946	.1917	.2471	7.810	.0061	.0104	275-545


Pure parameters and temperature ranges of the NLF-HB equation of state

Results & Discussions (4)


Excess enthalpy H^E at 313.15K for alkane(1) + alkanol(2). Experimental data ; • , octane +ethanol ; , octane + 1-propanol; , octane +1-butanol

Results & Discussions (5)

Excess enthalpy H^E at 313.15K for alkane(1) + alkanol(2). Experimental data ; • , nonane +ethanol; , nonane +1-propanol; , nonane +1-butanol

Results & Discussions (6)

Excess enthalpy H^E at 313.15K for alkane(1) + alkanol(2). Experimental data ; • , decane + ethanol ; , decane + 1-propanol ; ■ , decane + 1-butanol

Results & Discussions (3)

	A (dimensionless)	В (К ⁻¹)	AADH (%)
Octane + Ethanol	0.0267	9.9827	3.4988
Octane + 1-Propanol	0.0210	9.9855	2.9523
Octane + 1-Butanol	0.0281	9.9815	7.3946
Nonane + Ethanol	0.0279	9.9816	5.275
Nonane + 1-Propanol	0.0213	9.9853	2.263
Nonane + 1-Butanol	0.0282	9.9813	5.690
Decane + Ethanol	0.0267	9.9826	7.048
Decane + 1-Propanol	0.0215	9.9852	2.621
Decane + 1-Butanol	0.0272	9.9824	5.716

Binary interaction parameters from NLF-HB

Summary

The features of this work

- **1.** All excess enthalpies have positive values and their graphical shapes are asymmetric.
- 2. They have maximum value of the mole fraction between 0.60 ml/min and 0.80 ml/min.
- **3.** The H^E data was increased for all systems with the addition of the carbon number.
- **4.** As compared the H^E experimental results by following each 1-alkanol systems, the discrepancies were wholly smaller at n-alkane systems of mixing with 1-propanol than those with ethanol and 1-butanol.