Membrane Contactors for Stripping of Ammonia from Aqueous Solutions

Sung Bin Park

Dept. of Chemical & Biological Engineering, Korea University

Scheme

Introduction

- Mass transfer for Membrane Contactor
- Equilibrium & Henry's Constant
- Mass transfer coefficient correlation
- Application of Lee et al. model
- Extension of Lee et al. model
- Conclusion

Hollow Fiber Membrane contactor?

Hollow Fiber Membrane contactor?

Types of Hollow Fiber Membrane

Types of Hollow Fiber Membrane

Introduction

• Membrane Contactor Process

A new way to accomplish separation process Liquid/liquid extraction

Gas absorption/stripping

Applications

- Fermentation
- Pharmaceuticals
- Wastewater treatment
- Chiral separations
- Semiconductor Manufacturing
- Metal ion extraction
- □ VOC removal from wastewater etc.

Introduction

Membrane Contactor Process

Advantages

- Large extensive interfacial area of mass transfer
 - 1/30 in gas absorber, 1/500 in L/L extraction column
- No flooding, no unloading
- The possibility of realization of extreme phase ratios
- Nondispersive phase contact avoiding entrainment
- Direct scale-up
- Disadvantages
 - Significant membrane resistances
 - Limited applications : weak for organic solvents, solids
 - Expensive

- Qi and Cussler (1985a,b)
 - Mass transfer in gas absorption
 - Mechanism
 - Mass transfer out of feed solution
 - Diffusion across the membrane
 - Mass transfer into the product solution
- Yang and Cussler (1986)
 - Mass transfer in aqueuos deaeration and CO₂ absorption
 - Basis for designing hollow fiber membrane module
- Semmens et al. (1990)
 - Experiment for ammonia removal with a parallel hollow fiber module
 - Correlation for mass transfer coefficients

- Dahuron and Cussler (1988)
 - Protein extraction with hollow fiber contactors
 - Faster than conventional extraction equipment
- Prasad and Sirkir (1988)
 - Dispersion-free solvent extraction with hydrophobic and hydrophilic micoporous hollow fiber membrane module
 - Overall mass transfer coefficient charactrerized with distribution coefficients and interfacial tensions
- Wang and Cussler (1993)
 - Performance of baffled hollow fiber fabric module
 - Better performance than most conventional module geometries

• Sengupta et al.(1998)

- Empirical correlation of mass transfer for transverse flow
- Removal of dissolved oxygen from water with excess sweep gas
- Schöner et al.(1998)
 - Correlation for calculation the shell side mass transfer coefficient in cross flow
 - Application to extraction
- Gabelman and Hwang (1999)
 - General review of membrane contactors
 - Summary for mass transfer coefficient correlation
 In tube side : reasonable accuracy
 In shell side : more difficult to determine

Analysis of Membrane Contator Key information : Mass Transfer, Equilibrium, **Breakthrough pressure** • Mass transfer : mass balance Mass transfer coefficient from experimental data Parallel hollow fiber Countercurrent : Qi and Cussler (1985a), Sirkar (1992) Cocurrent : Qi and Cussler (1985b) Baffled hollow fiber : cross flow Sengupta et al. (1998), Schöner et al.(1998)

Correlation for mass transfer coefficients
 Dimensionless group : Re, Sc, Sh

Equilibrium at the gas-liquid interface
 Henry's law
 From vapor-liquid equilibrium data
 Henry's constant estimated for processes involving stripping fluids

In present work

- Application to ammonia stripping
 - One baffled commercial hollow fiber membrnae contactor from Liqui-Cel®
- Analysis of mass transfer in shell side according to the flow pattern
 - Parallel flow and cross flow
- Equilibrium : Henry's constant
 - Ammonia stripping process
 NaOH added : Ammonia molecule in pH>11
 NH₃-H₂O-NaOH VLE data needed
- Experiment : NH₃-H₂O-NaOH VLE
 - A modified static measurement

In present work

- Lee et al. model (1996)
 - Applied to NH₃-H₂O-NaOH
 - Assuming ammonia as a solvent species
- Application to mixed solvent systems with Lee et al. model
- Extension of Lee et al. model based on solvation

Mass Transfer

Steady state mass balance for shell side flow

1. Counter-current flow

 $\frac{dC_{il}}{dx} + K_{Q}(1-R)C_{il} = -K_{Q}\left(RC_{il}^{L} - C_{ig}^{L} / H_{i}\right) \qquad K_{Q} = K_{il}A / Q_{l} \qquad R_{Q} = Q_{l} / Q_{g}H_{i}$ $\frac{C_{il}^{L}}{C_{il}^{0}} = \frac{1-R}{\exp\left[K_{Q}(1-R)L\right] - R} + \frac{C_{ig}^{L}}{C_{il}^{0}H_{i}} \frac{\exp\left[K_{Q}(1-R_{Q})L\right] - 1}{\exp\left[K_{Q}(1-R_{Q})L\right] - R_{Q}}$

Mass Transfer

2. Cross flow

• Gas phase : Tube side

- Concentration : Only dependent on x
- Liquid phase : Shell side
 - Concentration : dependent on x, r

Mass Transfer

- Mass Balance

$$\frac{2Q_g}{\left(R^2 - R_o^2\right)} \frac{dC_{ig}(x)}{dx} = \frac{Q_l}{rL} \frac{\partial C_{il}(x, r)}{\partial r} \qquad Q_g \frac{dC_{ig}}{dx} = -k_{il}A\left(C_{il,2} - \frac{C_{ig}}{H_i}\right)$$
$$Q_g \left(C_{ig}^L - C_{ig}^0\right) = Q_l \left(C_{il}^L - C_{il}^0\right)$$
$$\frac{C_{ig}^0}{C_{il}^{R_0}H_i} = 1 - \exp\left[-R_Q (1 - E)\right] + \frac{C_{ig}^L}{C_{il}^{R_0}H_i} \exp\left[-R_Q (1 - E)\right] \qquad E = \exp\left(-K_Q L\right)$$

- Removal efficiency

$$1 - \frac{C_{il}^{L}}{C_{il}^{R_{0}}} = \frac{(1-F)\{R_{Q}(1+F) - (1-F)\}}{R_{Q}\{R_{Q} - (1-F)^{2}\}} - \frac{C_{ig}^{L}}{C_{il}^{R_{0}}H_{i}} \frac{R_{Q}(1-F^{2}) - (1-F)^{2}}{R_{Q}\{R_{Q} - (1-F)^{2}\}}$$
$$F = \exp\left[-R_{Q}\left(1-E^{\frac{1}{2}}\right)\right]$$

Experiment

Fig. 1 Schematic diagram of experimental apparatus

Hollow fiber membrane contactorAmmonia solution reservoirPacked columnStorage tankWater bathAir blowerStirrerpH electrodeATC probewater pumpPressure gaugeFlow meterNeedle valveSampling valve

Characteristics of HFMC

Hollow fiber Membrane modules		2.5″x8″	4″x28″	
Membrane fiber material		Polypropylene	Polypropylene	
Potting material		Polyethylene	Polyethylene	
Priming volume	Shell side	0.4 liters	4.2 liters	
(dm3)ª	Lumen side	0.15 liters	1.1 liters	
Equivalent diamet	er of shell side ^c	4.10 cm	6.94 cm	
Shell side cross	section area ^c	13.2 cm2	37.8 cm2	
Lumen side cross section area ^c		2.92 cm2	10.2 cm2	
Pore diameter ^a		0.03 micron	0.03 micron	
Membrane module inside diameter ^a		2.5 in	4 in	
Membrane Porosity ^a		25%	25%	
Shell side geometric void fraction ^b		0.40	0.04	
Fiber OI	D/ID ^a	300/200 micron	300/200 micron	
Fiber wall th	hickness ^a	50 micro	50 micro	
Maximum allowable working temperature/pressure ^a		60°C/7.4 kg/cm²	60°C/7.4 kg/cm²	
Effective fiber length ^c		16 cm	62 cm	
Effective membrane surface area based on fiber outside diameter ^a		1.40 m2	19 cm2	
Fiber number (EA) ^c		10200	31800	
^a Given by H ^b Estimated b ^c Estimated b	oechest Celanese. by Pierre et al. (2000) by Sengupta et al.(19)) 998)		

Results

Table 2-1. Comparison of mass transfer coefficients of stripped gases in2.5"x8" module

	Q ₁ (ml/min)	Parallel flow	Cross flow	Infinite gas phase
NH ₃	10	8.167 x10 ⁻⁶	8.501 x10 ⁻⁶	4.677 x10 ⁻⁶
	20	9.696 x10 ⁻⁶	9.983 x10 ⁻⁶	4.825 x10 ⁻⁶
	30	1.403 x10 ⁻⁵	1.465 x10 ⁻⁵	5.349 x10 ⁻⁶
	100	2.121 x10 ⁻⁵	2.135 x10 ⁻⁵	1.449 x10 ⁻⁵
	200	2.389 x10 ⁻⁵	2.398 x10 ⁻⁵	1.548 x10-5
	300	2.710 x10 ⁻⁵	2.719 x10 ⁻⁵	1.661 x10-5
	500	2.603 x10 ⁻⁵	2.608 x10 ⁻⁵	1.618 x10-5
O ₂	1920	6.970 x10 ⁻³	7.065 x10 ⁻³	6.943 x10-3
	3780	9.457 x10 ⁻³	9.473 x10 ⁻³	9.395 x10-3
	7560	1.330 x10 ⁻²	1.333 x10 ⁻²	1.316 x10-2
	11340	1.556x10 ⁻²	1.559 x10 ⁻²	1.535 x10-2

Results

	•			11 8
	Q ₁ (ml/min)	Parallel flow	Cross flow	Infinite gas phase
NH ₃	100	9.856 x10 ⁻⁶	1.023 x10 ⁻⁵	7.243 x10 ⁻⁶
	150	1.259 x10 ⁻⁵	1.309 x10 ⁻⁵	8.468 x10 ⁻⁶
	200	1.509 x10 ⁻⁵	1.573 x10 ⁻⁵	9.241 x10 ⁻⁶
	250	1.631 x10 ⁻⁵	1.694 x10 ⁻⁵	9.508 x10 ⁻⁶
	15138	7.900 x10 ⁻³	7.914 x10 ⁻³	7.792 x10 ⁻³
	18924	8.850 x10 ⁻³	9.162 x10 ⁻³	8.704 x10 ⁻³
	30282	1.124 x10 ⁻²	1.158 x10 ⁻²	1.096 x10 ⁻²
O ₂	37848	1.248 x10 ⁻²	1.283 x10 ⁻²	1.210 x10 ⁻²
	45420	1.353 x10 ⁻²	1.389 x10 ⁻²	1.306 x10 ⁻²
	56778	1.483 x10 ⁻²	1.520 x10 ⁻²	1.422 x10 ⁻²
	60558	1.520 x10 ⁻²	1.557 x10 ⁻²	1.455 x10 ⁻²
	75702	1.652 x10 ⁻²	1.689 x10 ⁻²	1.569 x10 ⁻²
	90840	1.765 x10 ⁻²	1.802 x10 ⁻²	1.664 x10 ⁻²
	94626	1.793 x10 ⁻²	1.829 x 10 ⁻²	1.687 x10 ⁻²
	105978	1.875x10 ⁻²	1.912 x10 ⁻²	1.756 x10 ⁻²
	121122	1.998x10 ⁻²	2.037 x10 ⁻²	1.859 x10 ⁻²

Table 2-2. Comparison of mass transfer coefficients of stripped gases in 4"x28"

Fig.2-3 Comparison of experimental percentage of ammonia removed with calculated values using 2.5"x8" hollow fiber membrane module with aqueous ammonia solutions

Fig.2-4 Comparison of experimental percentage of ammonia removed with calculated values using 4"x28" hollow fiber membrane module with aqueous ammonia solution

Fig.2-5 Comparison of experimental percentages of ammonia removed with calculated values using 4"x28" hollow fiber membrane module for different input concentrations

• Henry's Constant

$$H_i = \lim_{C_{il} \to 0} \frac{C_{ig}}{C_{il}} = \frac{V_l}{RT} \lim_{x_i \to 0} \frac{p_i}{x_i}$$

- Assuming ideal gas phase
- From ammonia-water vapor-liquid equilibrium data at several temperatures, (x>0.05)
- From ammonia-water-NaOH VLE (pH>11)

Fig.3.3 Schematic diagram of a modified static measurementEquilibrium CellPressure TransduserThermometerVacuum PumpHelium GasMagnetic StirrerGas ChromatographA/D ConverterCorkSampling loopSampling loopSampling loop

Results

Fig.3-6 The diagram of analysis for vapor phase composition of

7.4% ammonia solution with GC.

Results

Fig.3-7 The diagram of analysis for air with GC

Fig.3-5 Comparison of interpolated data from Wilson (1925) with this work for ammonia-water vapor-liquid equilbria at 298.15K

Results

Fig.3-8 P-x'-y diagram for $NH_3(1)-H_2O(2)-NaOH(3)$ VLE at 298.15K.

Table 3-1. Henry's constants of ammonia in NH₃-H₂O-NaOH systems at 298.15K

Weight of NaOH (g)	Henry's constant
-	1.040 x10 ⁻³
2	1.077 x10 ⁻³
4	9.909 x10 ⁻⁴
7	1.217 x10 ⁻³

cf) H_i =8.903x10⁻⁴ at 298.15K : estimated from NH3-H2O VLE at several tempartures

Correlations for mass transfer coeff.

Mass transfer

- mass tranfer of liquid in shell side
- mass transfer of vapor in membrane pore
- mass transfer of vapor in tube side
- Overall mass transfer coefficient

$$\frac{1}{K_{il}} = \frac{1}{k_{il}^{l}} + \frac{1}{k_{ig}^{p}H_{i}} + \frac{1}{k_{ig}^{g}H_{i}}$$

$$k_{ig}^{g} = 1.62 \frac{D_{ig}}{d} \left(\frac{d^{2}v_{g}}{LD_{ig}}\right)^{1/3} \quad k_{ig}^{p} = \frac{2r_{p}}{3} \left(\frac{8RT}{\pi M_{i}}\right)^{1/2} \frac{\varepsilon}{l\tau} \qquad \left(\frac{k_{il}^{l}d_{e}}{D_{il}}\right) = d \left(\frac{d_{e}v_{l}}{v_{l}}\right)^{b} \left(\frac{v_{l}}{D_{il}}\right)^{c}$$

Yang and Cussler (1986), Sengupta et al.(1998)

$$K_{il} \approx k_{il}^{l} \qquad \left(:: k_{il}^{l} \leq k_{ig}^{p}, k_{ig}^{g}\right)$$

Hollow Fiber Membrane contactor?

Results

Q _g (dm ³ /min)	Individual mass transfer coefficients (cm/sec)	Q_l (ml/min)			
		100	150	200	250
100	k_{il}	9.11x10 ⁻⁶	1.05x10 ⁻⁵	1.38x10 ⁻⁵	1.54x10 ⁻⁵
	$k_{ig}^{\ \ p}H_i$	1.34x10 ⁻³	1.34x10 ⁻³	1.34x10 ⁻³	1.34x10 ⁻³
	$k_{ig}{}^{g}H_{i}$	9.33x10 ⁻³	9.33x10 ⁻³	9.33x10 ⁻³	9.33x10 ⁻³
150	k _{il}	9.90x10 ⁻⁶	1.29x10 ⁻⁵	1.54x10 ⁻⁵	1.53x10 ⁻⁵
	$k_{ig}^{\ \ p}H_i$	1.34x10 ⁻³	1.34x10 ⁻³	1.34x10 ⁻³	1.34x10 ⁻³
	$k_{ig}{}^{g}H_{i}$	1.18x10 ⁻²	1.18x10 ⁻²	1.18x10 ⁻²	1.18x10 ⁻²
200	k_{il}	1.06x10 ⁻⁵	1.44x10 ⁻⁵	1.61x10 ⁻⁵	1.82x10 ⁻⁵
	$k_{ig}^{\ \ p}H_i$	1.34x10 ⁻³	1.34x10 ⁻³	1.34x10 ⁻³	1.34x10 ⁻³
	$k_{ig}{}^{g}H_{i}$	1.35x10 ⁻²	1.35x10 ⁻²	1.35x10 ⁻²	1.35x10 ⁻²

Table 4-2. Comparison with individual mass transfer coefficients in 4"x28" module

Results

Fig.4-4 The correlation of shell side mass transfer coefficient of NH_3 with 2.5"x8" and 4"x28" membrane contactor modules
Results

Fig.4-5 The correlation of shell side mass transfer coefficient of NH_3 with 2.5"x8" and 4"x28" membrane contactor modules

Results

Fig.4-6 The comparison of mass transfer coefficients for ammonia removal and oxygen removal.

Results

Table 4-3. The fitted parameter a and b for the correlation of mass transfer coefficients

	Parallel flow		Cross flow		
	a	b	а	b	
NH ₃ ¹⁾	0.0055	0.37	0.012	0.33	
NH ₃ ²⁾	0.0052	0.45	0.014	0.40	
O ₂	0.57	0.39	1.51	0.47	

 $^{1)}H_i$ =8.903x10⁻⁴ $^{2)}H_i$ =1.077x10-3

Application to NH₃-H₂O VLE

Fig.5-1 P-x, P-y diagram of ammoni-water vapor-liquid equilibrium at 293.15K

Application to NH₃-H₂O VLE

Fig.5-2 P-x-y diagram of ammonia-water vapor-liquid equilibria at 298.15K

Application to NH₃-H₂O-NaOH VLE

Fig.5-3 P-x' diagram of $NH_3(1)-H_2O(2)-NaOH(3)$ at 298.15K.

Application to NH₃-H₂O-NaOH VLE

Fig.5-4 x'-y diagram of $NH_3(1)-H_2O(2)-NaOH(3)$ at 298.15K

 Increasing interest in the effects of salts on the VLE of solvent mixtures.

A wide variety of important chemical processes

Wastewater treatment, extractive distillation, solution crystallization, desalination, gas scrubbing etc.

- The effect of salt out and salt in : shifting and eliminating azeotrpe of solvent mixtures
- Little is known about the effect of electrolyte on VLE of alcohol-water-systems because of complex interaction between mixed solvents

- Mock et al. (1986)
 - Extended Chen's NRTL model to mixed solvent solution
 - Ignore long-range interaction term
- Sander et al. (1986)
 - Extended UNIQUAC equation for the representation of salt effect on VLE
 - Concentration-dependent interaction parameter
- Macedo et al. (1990)
 - Modified Debye-Hückel term from Cardoso and O'Connell (1987)
- Li et al. (1994), Polka et al. (1994)
 - 4 ion-ion parameters
 - 2 solvent-solvent parameters
 - Applicable up to high concentration

• Excess Gibbs Energy : Lee et al. (1996)

- **Long-range + Physical** $G^E = G^E_{DH} + G^E_A + G^E_R$
- Debye-Hückel term

$$G_{DH}^{E^*} = -\frac{RTV}{4\pi a^3 N_a} \left[\ln(1+aK) - aK + \frac{(aK)^2}{2} \right] \qquad K = \left(\frac{8\pi e^2 N_a I}{D_s kT}\right)^{\frac{1}{2}}$$

In high pressure limit, holes are vanished $A^{E}(T, P = \infty, x_{i}) = A^{E}(T, low P, x_{i}) = G^{E}(T, low P, x_{i})$

Physical interaction : Athermal + Residual

$$\beta G_A^E = \sum N_i \ln \frac{\theta_i}{x_i} + \left(1 - \frac{z}{2}\right) \sum N_i q_i \ln \frac{q_M r_i}{r_M q_i} \quad \beta G_R^E = -\frac{z N_q}{2} \sum \theta_i \ln \left(\sum \theta_j \tau_{ji}\right)$$

• For solvent activity coefficient

 $\ln \gamma_j = \ln \gamma_{DH,j} + \ln \gamma_{A,j} + \ln \gamma_{R,j}$

For solute activity coefficient

$$\ln \gamma_j^* = \ln \gamma_j - \lim_{x_i \to 0} \ln \gamma_j$$
$$\ln \gamma_{\pm j}^* = \ln \gamma_{DH,\pm j}^* + \ln \gamma_{A,\pm j}^* + \ln \gamma_{R,\pm j}^*$$

• Interaction between ion $\varepsilon_{ij} = \varepsilon_{ij}^{(e)} + \varepsilon_{ij}^{(n)}$

- Interaction with uncharged species $\epsilon_{ii} = \epsilon_{ii}^{(n)}$
- Interaction between unlike species

$$\mathbf{\epsilon}_{ij}^{(n)} = (\mathbf{\epsilon}_{ii}^{(n)} \mathbf{\epsilon}_{jj}^{(n)})^{1/2} (1 - k_{ij})$$

Parameters for Mixed Solvent Systems

Parameters for Salt & Water

- From Lee et al. (1996)
- Only parameters for pure solvent & parameters for solvent-water interaction

$$r_i, \varepsilon_{ii}, k_{ij}$$

- Determination
 - Data for alcohol-water VLE (Gmehling et al., 1977)
 - Data for alcohol-water mixture volume and dielectric constant (Sandler, 1989; Conway, 1952)

Temperature-dependent parameters

$$r_{i} = r_{a} + r_{b}(T_{0}/T) + r_{c}\ln(T_{0}/T)$$

$$\varepsilon_{ii} = \varepsilon_{a} + \varepsilon_{b}(T_{0}/T) + \varepsilon_{c}\ln(T_{0}/T)$$

$$k_{ij} = k_{a} + k_{b}(T_{0}/T) + k_{c}\ln(T_{0}/T)$$

 $T_0 = 298.15K$

Table 5-1. Temperature coefficients of eqns (5-16) and (5-17) for methanol,ethanol, 1-propanol and 2-propanol

	r _a	r _b	r _c	ε _a	ε _b	\mathbf{E}_{c}
Methanol	281.80	-270.03	251.12	86.42	-85.13	76.65
Ethanol	16.50	-11.25	8.82	40.88	-40.00	33.16
1-Propanol	-15.20	22.05	-16.21	114.46	-113.83	98.34
2-Propanol	141.49	-136.40	117.42	-4.94	6.11	-9.30

Table 5-2. Temperature coefficients of eqns (5-18) for methanol-, ethanol-, 1propanol- and 2-propanol-water

	k _a	$k_{ m b}$	k _c
Methanol-water	281.80	-270.03	251.12
Ethanol-water	16.50	-11.25	8.82
1-Propanol-water	-15.20	22.05	-16.21
2-Propanol-water	141.49	-136.40	117.42

Fig.5-6 P-x'-y for EtOH(1)-H₂O(2)-LiCl(3) VLE at 298.15K. m(LiCl)=0.5 mol/kg.

Fig.5-8 P-x'-y for EtOH(1)-H₂O(2)-LiCl(3) VLE at 298.15K. m(LiCl)=4.0 mol/kg

Fig.5-9 P-x'-y for EtOH(1)-H₂O(2)-CaCl₂(3) VLE at 298.15K.

Fig.5-10 P-x'-y for EtOH(1)- $H_2O(2)-Na_2SO_4(3)$ VLE at 298.15K.

Fig.5-11 P-x'-y for MeOH(1)-H₂O(2)-CaCl₂(3) VLE at 298.15K.

Fig.5-14 P-x'-y for MeOH(1)-H₂O(2)-NaBr(3) VLE at 298.15K. m(LiCl)=1.0 mol/kg.

Fig.5-16 P-x'-y for MeOH(1)-H₂O(2)-NaBr(3) VLE at 298.15K. m(LiCl)=4.0 mol/kg

Table 5-3. Comparison of RMS errors of Isothermal VLE for Ethanol(1)-Water(2)-Electrolyte(3) systems

		σ_{y}	σ _P /mmHg
CaC	Cl_2	0.03	2.8
LiCl	(m=0.0)	0.01	0.8
	(m=0.5)	0.01	0.7
	(m=1.0)	0.01	0.3
	(m=4.0)	0.01	6.2
MgS	O_4	0.02	1.4
Na ₂ SO ₄		0.08	3.4
Average		0.02	2.2

Table 5-4. Comparison of RMS errors of Isothermal VLE for Methanol(1)-Water(2)-Electrolyte(3) systems

		σ_{y}	$\sigma_{\rm P}/{\rm mmHg}$
CaC	Cl_2	0.01	3.7
LiC	C1	0.003	1.8
NaBr	(m=0.0)	0.005	1.0
	(m=1.0)	0.006	1.3
	(m=2.0)	0.009	2.4
	(m=4.0)	0.14	3.4
Average		0.03	2.3

Fig.5-21 T-x'-y for EtOH(1)-H₂O(2)-Ca(NO₃)₂(3) VLE at 50.66kPa. m(Ca(NO₃)₂)=1.038 mol/kg

Fig.5-22 T-x'-y for EtOH(1)-H₂O(2)-Ca(NO₃)₂(3) VLE at 50.66kPa. $m(Ca(NO_3)) = 2.040 \text{ mm}/4m$

 $m(Ca(NO_3)_2)=2.049 \text{ mol/kg}$

m(CaCl₂)=1.505 mol/kg

Fig.5-19 T-x'-y for EtOH(1)-H₂O(2)-KI(3) VLE at 700mmHg.

Fig.5-20 T-x'-y for EtOH(1)- $H_2O(2)$ - $NH_4Cl(3)$ VLE at 754mmHg.

Fig.5-23 T-x'-y for $MeOH(1)-H_2O(2)-KCl(3)$ VLE at 760mmHg.

Fig.5-24 T-x'-y for $MeOH(1)-H_2O(2)-NaCl(3)$ VLE at 762mmHg.

Fig.5-25 T-x'-y for MeOH(1)-H₂O(2)-NH₄Cl(3) VLE at 755mmHg.

Fig.5-26 T-x'-y for Pr-2-OH(1)-H₂O(2)-Ca(NO₃)₂(3) VLE at 50.66kPa. $m(Ca(NO_3)_2)=1.038 \text{ mol/kg}$

Fig.5-27 T-x'-y for Pr-2-OH(1)-H₂O(2)-Ca(NO₃)₂(3) VLE at 50.66kPa. $m(Ca(NO_3)_2)=2.073 \text{ mol/kg}$

Table 5-5. Comparison of RMS errors of Isobaric VLE for Ethanol(1)-Water(2)-Electrolyte(3) systems

	Fixed		T dependent	
	$\sigma_{\rm y}$	σ_T/K	$\sigma_{\rm y}$	σ_T/K
BaCl2	0.07	1.9	0.06	1.9
$CaCl_2$	0.03	0.9	0.07	0.9
$C_{2}(NO_{1})$ (m=1.308)	0.02	1.0	0.02	0.4
$Ca(100_3)_2$ (m=2.049)	0.03	1.7	0.03	1.0
KCl (1)	0.06	2.5	0.07	2.6
KCl (2)	0.07	3.4	0.08	3.4
KI	0.02	0.9	0.05	1.4
KNO ₃	0.14	5.9	0.16	5.5
NaCl (1)	0.06	2.7	0.08	3.1
NaCl (2)	0.06	2.9	0.08	3.4
NaI	0.02	0.5	0.06	0.6
NaNO ₃	0.04	1.3	0.05	1.6
NH ₄ Cl	0.008	0.5	0.04	0.8
$SrBr_2$	0.02	0.8	0.05	0.8
$SrCl_2$	0.03	1.3	0.06	1.6
$Sr(NO_3)_2$	0.05	1.6	0.03	1.2
Average	0.04	1.9	0.06	1.9

Table 5-6. Comparison of RMS errors of Isobaric VLE for Methanol(1)-Water(2)-Electrolyte(3) systems

	Fixed		T dependent	
	σ	σΓ/Κ	σ_{y}	σ_T / K
KCI	0.05	2.7	0.06	3.1
NaCl	0.05	2.6	0.07	3.1
NH4C1	0.01	1.1	0.02	2.4
Average	0.04	2.1	0.05	2.9

Table 5-7. Comparison of RMS errors of Isobaric VLE for 1-Propanol(1)-Water(2)-Electrolyte(3) systems

	Fixed		T dependent	
	$\sigma_{\rm y}$	στ/Κ	$\sigma_{\rm y}$	σ _T /K
(x3=0.02)	0.03	0.8	0.07	1.3
(x3=0.04)	0.03	0.8	0.11	2.5
Ca(NO ₃) ₂ (x3=0.06)	0.02	0.3	0.08	1.8
(x3=0.08)	0.02	0.3	0.06	2.3
(x3=0.10)	0.01	0.5	0.01	1.2
KBr	0.03	2.3	0.10	4.4
KCl	0.03	0.9	0.07	2.2
NaBr	0.06	2.4	0.15	5.1
NaCl (1)	0.02	1.0	0.06	2.7
NaCl (2)	0.03	1.9	0.09	4.0
Average	0.03	1.1	0.08	2.8

Table 5-9. Comparison of RMS errors of Isobaric VLE for 2-Propanol(1)-Water(2)-Electrolyte(3) systems

	Fixed		T dependent	
	σ	στ/Κ	σ_{y}	σ_{T}/K
(m=1.308)	0.04	1.1	0.06	1.5
(m=2.073)	0.07	2.5	0.13	4.9
LiBr(1)	0.04	2.2	0.09	3.6
LiCl (2)	0.04	1.6	0.09	2.9
Average	0.05	1.9	0.09	3.2

Electrolyte Solution Based on Solvation

Previous Models

- ► G^E Model
 - Debye-Hückel (1923), Bromley (1973), Pitzer (1973)
 - Meissner & Tester (1972), Chen et al. (1982)
- Primitive Model
 - Waisman et al. (1972), Blum (1975), Harvey et al. (1989), Taghikhani et al. (2000)
- Nonprimitive Model
 - □ Planche et al. (1981), Ball et al. (1985),
 - Fürst et al. (1993), Zuo et al. (1998)
- Acceptable accuracy up to /=6.0 or less

Hydration Theory

G[∉] model

- Ghosh and Patwardhan (1990)
 - Based on lithium chrolide as a reference electrolyte
 - Hydration energy, function of the total moles of water hydrated per kg of solution
 Fitted with expreimental φ, γ
 - Up to /=24 for 150 electrolyte solutions
- Schoenert (1990, 1991, 1993, 1994)
 - Modified hydration model of Robinson and Stokes
 - Hydration of ions : ligand-binding equibria
 - Transfer of water to the hydration spheres of ions
 - Up to m=1 for HCI,LiCI,NaCI,KCI,CsCI,NH₄CI,NaBr

Hydration Model

SAFT Approach

- Gil-Villegas et al. (2001)
 - Ionic contribution : MSA
 - Monomer : perturbation expansion
 - Associaton : Solvent-solvent, solvent-ion, ion-ion pairing
 - Applied to the NaCl solution up to 10 m
- Paricaud et al. (2001)
 - Applied to the NaOH solution up to 22 m
- In present work
 - Solvation contribution from the Veytsman statistics Explicitly added to Lee et al. model
 - Application to LiCl, LiBr, Lil and LiClO₄ solutions

Excess Gibbs Function

• Long-range + Physical + Solvation

$$G^E = G^E_{DH} + G^E_A + G^E_R + G^E_{HB}$$

In high pressure limit, holes are vanished

$$A^{E}(T, P = \infty, x_{i}) = A^{E}(T, low P, x_{i}) = G^{E}(T, low P, x_{i})$$

Physical interaction : Athermal + Residual From Lee et al. model (1996)

Solvation interaction

From a normalized Veytsman statistics (Park et al., 2001)

Activity Coefficient

• For solvent in symmetric convention

 $\ln \gamma_{j} = \ln \gamma_{DH,j} + \ln \gamma_{A,j} + \ln \gamma_{R,j} + \ln \gamma_{HB,j}$

• For solute in asymmetric convention

$$\ln \gamma_j^* = \ln \gamma_j - \lim_{x_i \to 0} \ln \gamma_j$$

$$\ln\gamma_{\pm i}^* = \ln\gamma_{DH,\pm i}^* + \ln\gamma_{A,\pm i}^* + \ln\gamma_{R,\pm i}^* + \ln\gamma_{HB,\pm i}^*$$

Solvation Contribution

• For solvent,

$$\ln \gamma_{HB,k} = -\sum_{i}^{m} d_{k}^{i} \ln \frac{N_{i0}^{k} N_{i0}^{0}}{N_{i0} N_{i0}^{k,0}} - \sum_{j}^{n} a_{k}^{j} \ln \frac{N_{0j}^{k} N_{0j}^{0}}{N_{0j} N_{0j}^{k,0}}$$

• For solute,

$$\ln \gamma_{HB,\pm k}^{*} = -\frac{\nu_{+k}}{\nu_{\pm k}} \sum_{i}^{m} d_{k}^{i} \ln \frac{N_{i0}^{0} N_{i0}^{\infty}}{N_{i0}^{0,\infty}} - \frac{\nu_{-k}}{\nu_{\pm k}} \sum_{j}^{n} a_{k}^{j} \ln \frac{N_{0j}^{0} N_{0j}^{\infty}}{N_{0j} N_{0j}^{0,\infty}}$$
$$N_{i0}^{HB} = N_{d}^{i} - \sum_{i}^{n} N_{ij}^{HB}, \qquad N_{0j}^{HB} = N_{a}^{j} - \sum_{i}^{m} N_{ij}^{HB}$$

N^{HB}_{ij}: the number of proton donor-acceptor pair for hydrogen bonding

$$N_{ij}^{HB}N_r = \left(N_d^i - \sum_{j=1}^n N_{ij}^{HB}\right) \left(N_a^j - \sum_i^m N_{ij}^{HB}\right) \exp\left(-\beta A_{ij}^{HB}\right)$$

()

$$\triangleright$$
 N_{ij}^0 with A_{ij}^{HB} =

Parameters

• For physical interaction

- Size parameter of each ion and water, r_i
- Energy parameters

Cation-water & anion-water, τ_{13} , τ_{23} , τ_{31} , τ_{32}

For solvation

Solvation number

Cation : donor number, d

□Anion : acceptor number, a

□ Water : donor & acceptor number (*d*=2, *a*=1)

Solvation energy

Cation-water & anion-water, A_{13}^{HB} , A_{32}^{HB}

Parameter Determinations

• Size parameter

- Cation : from crystalline ionic volume
- Water : from Lee et al. model (2.5)
- Solvation number
 - From coordination numbers in hydration shells of ions (Krestov et al., 1994)
- Solvation energy of water : from Luck(1980) (-10.55 kJ/mol)
- Data for solute activity coefficients
 - Size parameter of each anion
 - Energy parameters for physical interaction
 - Solvation numbers & solvatoin energy parameters of cation- & anion-water

Results

Table 1. Parameters for Lithium ionic Electrolyte Systems

	r _i	$ au_{13} ({ m or} au_{23})$	d_{ii} (or a_{ii})	A_{13} (or A_{32}) / kJ mol ⁻¹
Li ⁺	0.1229	0.156	6	-15.61
Cl-	0.615	0.143	5	-4.75
Br	1.145	1.167	8	-4.70
I-	1.756	1.350	8	-4.45
ClO ₄ -	1.845	1.052	8	-3.85

Fig.1 The activity coefficient of LiCl.

Fig.5 The activity coefficient of LiI.

Fig.6 The activity coefficient of LiClO₄.

Conclusions

- Mass transfer mechanism in ammonia stripping process was analyzed for parallel and cross flow in shell side
- Measuring NH₃-H₂O-NaOH VLE data with a modified static method, we estimated the Henry's constant of ammonia in aqueous solution.
 - Due to the presence of air and the uncertainty in the amount of water present in vapor phase, it is difficult to measure the equilibrium data.
- Mass transfer coefficients of ammonia removal were correlated with the Henry's constant, and compared with those of oxygen removal of Sengupta et al. (1998)
 - Fitted parameter a : dependent to the removed species.

Conclusions

- Lee et al. model was applied to the NH₃-H₂O-NaOH VLE assuming ammonia to be a solvent species. The calculated results show similar trend with the experimental data.
- Lee et al. model also was applicable to the saltmixed solvent VLE systems with only solvent parameters fitted from solvent-solvent VLE data.
- Lee et al. model was extended to the high concentrated electrolyte solutions, explicitly including solvation from a normalized Veytsman statistics. The fitted results give a good agreement with experimental activity coefficients of LiCl, LiBr, LiI and LiClO₄ up to 20 molal concentrations.