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Introduction

 Unusual phase behavior of associating polymers
 Liquid-Liquid equilibria of Nylon-6 / tetrafluoroethanol / carbon 

ioxide at 373.15 K
 Solutions of Telechelic polymers
 The competition between inter- and intramolecular association
 Wertheim’s theory 

• Model for intermolecular associations
• Unable to predict the intramolecular association

 This work
 Development of the model for the intramolecular association
 Comparison of Monte Carlo simulation results and the theory
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Metropolis Monte Carlo Simulation

 Potential energy
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Metropolis Monte Carlo Simulation

 NVT ensemble
 Starting from an equilibriated configuration

• Ordinary flexible hard chain molecules with no association sites.
 Association sites were added to terminal segments.
 Displacement and Reorientation using “translational-jiggling” 

algorithm of Dickman and Hall [1988]
• Rearrangement of atoms in chain molecules
• Accepted ratio of 40 % of the configurations generated

 NPT ensemble
 The length of the simulation cell are changed to keep the pressure 

constant.
 About 40 % of the volume changes are accepted

(1) Random uniform displacement : 
(2) Bond vectors                                                 along chain 

to independent random displacements, where                
by adding a random vector bj to ei

(j) and normalizing the 
resultant to unit length
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Theory for Intra- and Intermolecular Association

 The change in configurational Helmholtz free energy

 Solving nonlinear equations as follows
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Theory for Intra- and Intermolecular Association

 Thermodynamic variables
 Configurational internal energy

 Compressibility factor (Equation of state)

 Equation of state for the reference state [Chapman et al. 1988]
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Results and Discussions

 At low density, there is significant difference between 
Wertheim’s theory and the present theory.

Fig. Fraction of unbonded molecules vs εsite/kT at three densities; 
symbols represent simulation results
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Results and Discussions

 As density increases, Ninter/Nintra also increases

Fig. Ratio of the number of intermolecular bonds to the number of 
intramolecular bonds vs εsite/kT at three densities
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Results and Discussions

 At the highest density, the errors are increased at the high 
association energy.

Fig. Configurational energy vs εsite/kT at three densities
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Results and Discussions

 The minimum in the compressibility factor
 The competition between inter- and intramolecular association
 At lower density, intramolecular association is dominated.
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Conclusion

 Development of a theory to explain the competition between 
inter- and intramolecular association

 The good agreement with Monte Carlo simulation results for 
most of the conditions studied.
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