Competition Between Intermolecular and Intramolecular Association in Polyatomic Molecules : Theory and Simulation

A. Garcia-Cruellar, D. Ghonasgi, and W.G. Chapman *Fluid Phase Equilibria*, **116**, 275 (1999)

Korea University, Chem. & Bio. Engineering Kim, Yong-soo

Introduction

- Unusual phase behavior of associating polymers
 - Liquid-Liquid equilibria of Nylon-6 / tetrafluoroethanol / carbon ioxide at 373.15 K
 - Solutions of Telechelic polymers
 - The competition between inter- and intramolecular association
 - Wertheim's theory
 - Model for intermolecular associations
 - Unable to predict the intramolecular association
- This work
 - Development of the model for the intramolecular association
 - Comparison of Monte Carlo simulation results and the theory

Metropolis Monte Carlo Simulation

• Potential energy

$$\phi = \phi_{HS} + \phi_{inter}^{assoc} + \phi_{intra}^{assoc}$$

$$\phi_{HS}(\mathbf{r}, \Omega_1, \Omega_2) = \begin{cases} \infty & \text{if } r_{ij} < \sigma \\ 0 & \text{otherwise} \end{cases}$$

$$\phi_{\text{inter}}^{\text{assoc}}(\mathbf{r}, \Omega_{t1}, \Omega_{t2}) = \begin{cases} -\varepsilon_{\text{inter}} & \text{if } r < r_c, \theta_1 < \theta_c, \text{ and } \theta_2 < \theta_c \\ 0 & \text{otherwise} \end{cases}$$

$$\phi_{\text{intra}}^{\text{assoc}}(\mathbf{r}, \Omega_{\dagger}, \Omega_{\dagger}) = \begin{cases} -\varepsilon_{\text{intra}} & \text{if } r < r_c, \theta_1 < \theta_c, \text{ and } \theta_2 < \theta_c \\ 0 & \text{otherwise} \end{cases}$$

Metropolis Monte Carlo Simulation

(1)

(2)

- NVT ensemble
 - Starting from an
 - Ordinary flexi
 - Association sites
 - Displacement and Reoriental.
 algorithm of Dickman and Hall [].
- Random uniform displacement : $\mathbf{x}_{i}^{(j)} \rightarrow \mathbf{x}_{i}^{(j)} + \mathbf{a}$ Bond vectors $\mathbf{e}_{i}^{(j)} = \mathbf{x}_{i}^{(j+1)} - \mathbf{x}_{i}^{(j)}$ (j = 1, ..., n-1) along chain to independent random displacements, where $|\mathbf{e}_{i}^{(j)}| = 1$ by adding a random vector \mathbf{b}_{j} to $\mathbf{e}_{i}^{(j)}$ and normalizing the resultant to unit length

"translational-jiggling"

- Rearrangement of atoms in chain molecules
- Accepted ratio of 40 % of the configurations generated

NPT ensemble

- The length of the simulation cell are changed to keep the pressure constant.
- ♦ About 40 % of the volume changes are accepted

Theory for Intra- and Intermolecular Association

• The change in configurational Helmholtz free energy

$$\frac{A^{assoc}}{NkT} = \ln X_0 + X_0^{\text{intra}} - X_A$$

Solving nonlinear equations as follows

$$X_{A} = \frac{X_{0}^{\text{int} ra}}{1 + \rho X_{A} \Delta_{AB}^{\text{int} er}} \qquad \Delta_{AB}^{\text{int} er} = 4\pi g_{HS}(\sigma) K_{AB} \left[\exp\left(\varepsilon_{AB}^{\text{int} er} / kT\right) - 1 \right]$$
$$X_{0} = \frac{X_{0}^{\text{int} er}}{1 + \Delta^{\text{int} ra}} \qquad \Delta^{\text{int} ra} = D \left[\exp\left(\varepsilon^{\text{int} ra} / kT\right) - 1 \right]$$
$$X_{0} = X_{A}^{2} / X_{0}^{\text{int} ra}$$
$$X_{0}^{\text{int} er} + X_{0}^{\text{int} ra} - X_{0} = 1$$

Theory for Intra- and Intermolecular Association

- Thermodynamic variables
 - Configurational internal energy

$$\frac{\partial \left(A^{assoc} / NkT\right)}{\partial \beta} = \frac{1}{X_0} \frac{\partial X_0}{\partial \beta} - \frac{\partial X_A}{\partial \beta} + \frac{\partial X_0^{\text{int } ra}}{\partial \beta} = \frac{U}{N}$$

Compressibility factor (Equation of state)

$$Z^{assoc} = \eta \frac{\partial \left(A^{assoc} / NkT\right)}{\partial \eta} = \eta \left(\frac{1}{X_0} \frac{\partial X_0}{\partial \eta} - \frac{\partial X_A}{\partial \eta} + \frac{\partial X_0^{\text{int } ra}}{\partial \eta}\right)$$

where, $\eta = \pi \ m\rho\sigma^3 / 6$

• Equation of state for the reference state [Chapman et al. 1988]

$$Z = m \left(\frac{1 + \eta + \eta^2 - \eta^3}{(1 - \eta^3)} \right) - (m - 1)\eta \frac{5 - 2\eta}{(1 - \eta)(2 - \eta)} - (m - 1)\eta \frac{5 - 2\eta}{(1 - \eta)(1 - \eta)(1 - \eta)} - (m - 1)\eta \frac{5 - 2\eta}{(1 - \eta)(1 - \eta)(1 - \eta)} - (m - 1)\eta \frac{5 - 2\eta}{(1 -$$

• At low density, there is significant difference between Wertheim's theory and the present theory.

Fig. Fraction of unbonded molecules vs ε_{site}/kT at three densities; symbols represent simulation results

• As density increases, N_{inter}/N_{intra} also increases

Fig. Ratio of the number of intermolecular bonds to the number of intramolecular bonds vs ε_{site}/kT at three densities

• At the highest density, the errors are increased at the high association energy.

Fig. Configurational energy vs ε_{site}/kT at three densities

- The minimum in the compressibility factor
 - The competition between inter- and intramolecular association
 - ◆ At lower density, intramolecular association is dominated.

Conclusion

- Development of a theory to explain the competition between inter- and intramolecular association
- The good agreement with Monte Carlo simulation results for most of the conditions studied.

References

- A. Garcia-Cruellar, D. Ghonasgi, and W.G. Chapman, *Fluid Phase Equilibria*, **116**, 275 (1999)
- D. Ghonasgi, V. Perez, and W. G. Chapman, J. Chem. Phys., 101, 6880 (1994)
- D. Ghonasgi and W. G. Chapman, J. Chem. Phys., **102**, 2585 (1995)
- R. Dickman and C. K. Hall, J. Chem. Phys., 89, 3168 (1988)
- W. G. Chapman, G. Jackson, and K. E. Gubbins, *Mol. Phys.* 65, 1057 (1988)
- W. W. Wood, J. Chem. Phys., 48, 415 (1968)
- J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White, Jr., *Equations of State for fluids and Fluid Mixtures*, Elsvier Press, Amsterdam (2000)
- M. P. Allen and D. J. Tildsley, *Computer Simulation of Liquids*, Clarendon Press, Oxford (1989)