A Review on Equations of State Applicable to Polymers and Complex Systems

J.W.Kang, J.H.Lee, K.-P. Yoo and C.S.Lee

Department of Chemical Engineering Korea Univeristy Sogang University

Paper presented for PPEPPD 2001, May 20-25, Kurashiki

Motivation

□ Increasing demands of EOS models for various process conditions and complex systems

- Supercritical conditions and high pressure systems
- Phase equilibria of polymers

- Phase equilibria of associating mixtures (alcohols, acids)
- Simultaneous representation of VLE and H^E

EOS approach provides integrated approach covering wider range of process conditions and various properties

□ Characteristics and understanding of each EOS models are important for various applications.

Three Classes of EOS Models

Based on Semi-Classical Partition Function

- Cubic Equation of State and Other van-der Waals based EOS
 - Soave-Redlich-Kwong (1972), Peng-Robinson EOS (1976)
 - Mixing Rules proposed by Huron-Vidal (1979), Michelsen (1990) and Wong-Sandler (1992)

- Radial Distribution Function Approaches

- *PHCT* (1978), *PACT* (1985)
- SAFT (Huang and Radosz, Chapman, 1990)

Based on Lattice Statistics

- Sanchez-Lacomb (1976)
- Panayiotou-Vera (1981)
- NLF -EOS proposed by You, Yoo and Lee (1993)
- Hydrogen Boding proposed by Veytzman (1990) + Lattice EOS
 - Panayiotou-Sanchez (1991), NLF-HB EOS (Yeom et. al., 1999)

Three Classes of EOS Models – Historical Review

H

H

H

EOS Models Selected for Comparison

Peng-Robinson Equation of State with Wong-Sandler Mixing Rule (PR-WS)

- Peng and Robinson (1976) : EOS

- Wong and Sandler (1992) : Mixing Rule
- Mathias and Copeman (1983) : a(T) law

□ Statistically Associated Fluid Model (SAFT)

– Huang and Radosz, Chapman (1990)

□ Nonrandom Lattice Fluid EOS with Hydrogen Bonding (NFL-HB)

– You, Yoo and Lee (1993)

– Yeom, Yoo and Lee (1999)

Comparison

- □ Number of pure and mixture parameters
- Procedure to obtain pure component parameters and binary interaction parameters
- Pure component properties (vapor pressure and liquid density)
 Binary VLE calculation of various mixtures
 Polymer solubility calculation
- **Computation time**
- □ Sensitivity of VLE calculation with respect to binary interaction parameters (robustness)

Peng-Robinson EOS with Wong-Sanler Mixing Rule (PR-WS EOS)

$$EOS$$

$$Z = \frac{V}{V-b} - \frac{a(T)V}{RT(V+\varepsilon b)(V+\sigma b)}$$

$$a(T) = a_{c}\alpha(T)$$

$$a(T) = a_{c}\alpha(T)$$

$$a(T) = a_{c}\alpha(T)$$

$$\alpha = [1+C_{1}(1-T_{R}^{0.5})+C_{2}(1-T_{R}^{0.5})^{2}+C_{3}(1-T_{R}^{0.5})^{3}]^{2}$$

$$Mathias-Copeman a(T)$$

$$law (1983)$$

$$\alpha = [1+C_{1}(1-T_{R}^{0.5})+C_{2}(1-T_{R}^{0.5})^{2}+C_{3}(1-T_{R}^{0.5})^{3}]^{2}$$

$$Mong-Sanddler mixing rule (1992)$$

$$G^{ex}(T, P = 1 \text{ bar}, x_{i}) \approx A^{ex}(T, P = 1 \text{ bar}, x_{i}) \approx A^{ex}(T, \text{ high P}, x_{i})$$

$$B(x_{i}, T) = \sum \sum x_{i}x_{j}B_{ij}(T) = \sum \sum x_{i}x_{j}\left(b_{ij} - \frac{a_{ij}}{RT}\right) = b - \frac{a}{RT}$$

$$b_{ij} - \frac{a_{ij}}{RT} = \frac{1}{2}\left[\left(b_{ii} - \frac{a_{ii}}{RT}\right) + \left(b_{jj} - \frac{a_{jj}}{RT}\right)\right](1-k_{ij})$$

Statistical Associating Fluid Theory (SAFT)

Nonrandom Lattice Fluid EOS with Hydrogen Bonding (NLF-HB EOS)

Comparison – pure component parameters

EOS Models	Parameters	T Dependency	Procedure To Get Parameters
* Non-specific interaction	1		
PR-WS	a_i, b_i	<i>a_i</i> Dependent <i>b_i</i> Independent	Using critical const. and vapor pressure
SAFT	$r_i, \mathcal{E}_i, \sigma_i, e$	Independent	Using vapor pressure and liquid density
NLF-HB	r_i, \mathcal{E}_{ii}	Dependent	Using vapor pressure and liquid density
* Specific interaction (Hy	vdrogen bonding)		
PR-WS	-	-	-
SAFT	$\boldsymbol{\varepsilon}^{S_iY_j}, \boldsymbol{\kappa}^{S_iY_j}$	Independent	Required for individual species and additional bond formation
NLF-HB	U^{HB}, S^{HB}	Independent	Depends on the type of hydrogen bond

Comparison – mixing rule and binary interaction parameters

	PR-WS	SAFT	NLF-HB	
Basis of Mixing Rule	Based on quadratic composition dependence of B _{ij}	Vdw / VF mixing rule Results are affected by the choice of mixing rule	Do not require <mark>empirical</mark> mixing rule	
No. of Binary Parameters	2 (UNIQUAC) 3 (NRTL) k _{ij} calculated	1 (k _{ij})	1 (k _{ij})	
Procedure	Fit activity coeff. (obtain k _{ij})	Global Optimization of DP and DY	Global Optimization of DP and DY	
Cross Association	0	Additional cross association parameters (2)	Can be assumed(2)	

Procedures for Wong-Sandler Mixing Rule

Controlled Optimization

- Using VLE data

- Using existing activity model parameters (DDB or UNIFAC, ...)
- Using infinite dilution activity coefficient

For given activity coefficient parameters , adjust k_{ij} to match following underlying assumption of Wong-Sandler mixing rule

 $G^{ex}(T, P = 1 \text{ bar}, x_i) \approx A^{ex}(T, P = 1 \text{ bar}, x_i) \approx A^{ex}(T, \text{ high } P, x_i)$

□ Global Optimization

- Optimization of Gibbs free energy model parameter and k_{ii} value
- Can violate the basic assumption

Sample Calculation – PR-WS can be inconsistent

Plot of Excess Helmholtz energy for hexane + hexanol system

Plot of Excess Helmholtz energy for methane + butane system

Controlled optimization

Fit A_{12} and A_{21} Adjust k_{12} using $A^{E}=G^{E}$ Global optimization Fit A_{12} , A_{21} and k_{12}

Experimental Data for Comparison

	Source	No. of Data
Vapor pressure Liquid denisty	KDB (http::/thermo.korea.ac.kr/kdb)	Total 58 Components
VLE data	Electronic version of DDB	34 systems 82 set 1321 points
Polymer Solubility	Hao et al. (DECHEMA)	4 systems 18 sets 205 points

Vapor Pressure Error

 $DP(\%) = \sum \sqrt{(P_i^{calc} - P_i^{exp})^2 / P_i^{exp^2}}$

•PR-MC is most accurate with 3 T dependent parameters •SAFT is most inaccurate due to T independent parameters

Fig.1 Comparison of vapor pressure error for three EOS models.

	PR-MC	SAFT	NLF-HB
Average % Error	0.27	2.11	0.67

Liquid Density Error

Fig.2 Comparison of saturated liquid density error for three EOS models.

 $D\rho(\%) = \sum \sqrt{(\rho_i^{calc} - \rho_i^{exp})^2 / \rho_i^{exp^2}}$

•NLF-HB is most accurate with 3 T dependent size parameters •PR-MC is most inaccurate because liquid density data were not fitted

	PR-MC	SAFT	NLF-HB
Average % Error	5.27	3.19	0.19

Classification of components and objective function for VLE comparison

□ NONPOLAR COMPONENTS (NP)

- Non-hydrogen bonding, low dipole moments
- Methane, ethane, ...

□ ASSOCIATING COMPONENTS (AS)

- Self hydrogen bonding components
- Alcohols, acid, amines, ...

□ NON-ASSOCIATING COMPONENTS (NA)

- Do not form self-association, weakly polar
- Can form cross-association
- Ketone, ether, ester, aldehyde,...

$$OBJF = \sum_{i} \sqrt{(P_i^{calc} - P_i^{exp})^2 / P_i^{exp^2} + (y_i^{calc} - y_i^{exp})^2 / y_i^{exp^2}}$$

$$DP(\%) = \frac{1}{N} \sum_{i} \left| (P_i^{calc} - P_i^{exp}) \right| / P_i^{exp} \times 100$$
$$DY = \sum_{i} \left| y_i^{calc} - y_i^{exp} \right| / N$$

System Index : VLE for NP + NP System at low P

NP + **NP** : Hexane + n-Alkane Systems

- C7: Hexane + Heptane

- C8 : Hexane + Octane
- C10 : Hexane + Decane
- C12 : Hexane + Dodecane
- C16 : Hexane + Hexadecane

VLE of NP + NP System at low P (hexane + n-alkane)

Fig.3 Comparison of error in bubble pressure calculation for NP + NP systems at low P (hexane + n-alkane)

Fig.4 Comparison of error in bubble point compostion calculation for NP + NP systems at low P (hexane + n-alkane)

	PR		SAFT		NLF	
	DP(%)	DY	DP(%)	DY	DP(%)	DY
Average	0.52	0.005	1.69	0.006	0.55	0.007

•All three EOS model shows good agreements with data (DP < 1-2 %, DY < 0.01) •Although SAFT seems most inaccurate, most error is due to inaccuracy in the pure component vapor pressure

System Index : VLE for NP + AS System at low P

\Box NP + AS : hexane + 1-alkanol

- OL1 : hexane + methanol
- OL2 : hexane + ethanol

- OL3 : hexane + 1-propanol
- OL4 : hexane + 1-butanol
- OL5 : hexane + 1-pentanol
- OL6 : hexane + 1-hexanol
- OL7 : hexane + 1-heptanol

VLE of NP + AS System at low P (hexane + 1-alkanol)

Fig.5 Comparison of error in bubble pressure calculation for NP + AS systems at low P (hexane + 1-alkanol)

Fig.6 Comparison of error in bubble point compostion calculation for NP + AS systems at low P (hexane + 1-alkanol)

	PR-WS		SAFT		NLF-HB	
	DP(%)	DY	DP(%)	DY	DP(%)	DY
Average	1.89	0.009	1.36	0.008	1.37	0.009

•All three EOS model shows good agreements with data (DP < 1-2 %, DY < 0.01) •NLF-HB EOS shows better performance as the molecular weight of 1-alkanol becomes larger

System Index : VLE of NA + NA System at low P

□NA + NA : Mixtures of ketone, ether, ester

- DEE293 : acetone + diethyl ether at 293.15 K

- DEE303 : acetone + diethyl ether at 303.15 K

- MA308 : acetone + methyl acetate at 308.15 K

- MA328 : acetone + methyl acetate at 328.15 K

VLE of NA + NA System at low P (ether,ketone,ester)

Fig.7 Comparison of error in bubble pressure calculation for NA + NA systems at low P (mixtures with acetone) < DEE : Diethyl ketone, MA : methyl acetate >

< DEE : Diethyl ketone, MA : methyl acetate >

	PR-WS		SAFT		NLF-HB	
	DP(%)	DY	DP(%)	DY	DP(%)	DY
Average	1.15	0.007	1.08	0.008	1.50	0.006

•All three EOS model shows good agreements with data (DP < 1-2 %, DY < 0.01) •VLE error is mostly determined from pure component property error (very low vapor pressure)

System Index : VLE of NA + AS System at low P

□ NA + AS : ketone,ether, ester + 1-alkanol

-1: acetone + methanol at 298.15 K

- -2: acetone + methanol at 328.15 K
- -3: acetone + ethanol at 305.15 K
- -4: acetone + ethanol at 32815 K
- 5 : diethyl ether + methanol at 303.15 K
- 6 : diethyl ether + ethanol at 298.15 K
- 7 : diethyl ether + ethanol at 313.15 K
- 8 : methyl acetate + methanol at 298.15 K
- 9: methyl acetate + methanol at 308.15 K
- -10: methyl acetate + ethanol at 323.15 K
- 11 : methyl acetate + ethanol at 333.15 K

VLE of NA+AS System at low P (1-alcohol + ketone, ether, esters)

Fig.9 Comparison of error in bubble pressure calculation for AS + NA systems at low P

0.04 Absolute error in bubble point composition PR-WS SAFT 0.03 NLF-HB 0.02 0.01 0.00 10 11 1 2 3 4 5 6 7 8 9

Fig.10 Comparison of error in bubble point compostion calculation for AS + NA systems at low P

	PR-WS		SAFT		NLF-HB	
	DP(%)	DY	DP(%)	DY	DP(%)	DY
Average	0.89	0.005	3.62	0.022	1.77	0.011

• SAFT and NLF-HB require additional parameters for cross-association

 While SAFT seems most inaccurate, the result can be further optimized using more refined cross-association parameters.

• NLF-HB shows good performance despite the simplification that cross association energies are the same as those of self association of alcohols

System index : VLE of AS+AS systems at low P

□ AS + AS : mixtures of water, alcohol, acid

-A: water + methanol at 298.15 K

- **B** : water + methanol at 308.15 K
- C: water + methanol at 323.15 K
- D: water + methanol at 373.15 K
- E: water + methanol at 423.15 K
- F: water + ethanol at 298.15 K
- G: water + ethanol at 312.91 K
- **H**: water + ethanol at 347.94 K
- *I*: water + ethanol at 413.15 K
- J: water + 1-propanol at 303.15 K
- K: water + 1-propanol at 333.15 K
- *L* : water + 1-propanol at 352.95 K
- -M: water + acetic acid at 293.15 K
- N: water + acetic acid at 298.15 K
- O: water + acetic acid at 303.15 K

VLE of AS + AS System at low P (mixtures of water, alcohol, acid)

0.05

Fig.11 Comparison of error in bubble pressure calculation for AS + AS systems at low P (water, alcohol, acids) Absolute error in bubble point composition PR-WS SAFT 0.04 NLF-HB 0.03 0.02 0.01 0.00 С Μ N O В D Е G н J Κ

Fig.12 Comparison of error in bubble point compostion calculation for AS + AS systems at low P (water, alcohol, acids)

	PR-WS		SAFT		NLF-HB	
	DP(%)	DY	DP(%)	DY	DP(%)	DY
Average	1.84	0.011	2.12	0.016	1.35	0.012

All three EOS model shows good agreements with data (DP < 1-2 %, DY < 0.01)

 NLF-HB shows good result for water + acid systems using the extended hydrogen bonding theory (Park, Kang, Yoo and Lee, 2001)

Extended hydrogen bonding theory for dimers

Extended lattice statistics considering dimerization for acids

□ Presented at PPEPPD 2001 symposium (poster session)

New partition function proposed for dimerization

$$g_{D} = \frac{N_{D}^{1}!}{N_{10}^{D}!(2!)^{N_{11}^{H}}N_{11}^{H}!}$$

Generalized treatment of dimerization and normal association

VLE of water + acetic acid system

Fig.4 Comparison of Experimental Result with Caculation for Water + Acetic Acid System • Very complex behavior of system

-Self Association (water) -Dimerization (acid) -Cross Assocation (acid-water)

• NLF-HB shows most accurate result using new extended HB theory

- All the results were greatly influenced by the pure component parameters outside the normal range (supercritical condition)
- SAFT shows good result using the more parameter for light molecules (e)

NP + AS systems at high P (CO₂ + alcohol)

Average	3.98	0.011	3.72	0.019	3.28	0.012
Similar trend a	is the previ	ous slideC	alculation	failed fo	r PR-WS	

SAFT and NLF-HB shows inaccurate result

Polymer Solubility for NP + NP mixtures

	PR-WS	SAFT	NLF-HB
Average % Error	1.90	2.08	1.81

Polymer solubility for AS + NA mixtures

Polymer solubility calculations using PR-WS EOS

Result of Orbey and Sandler (AIChE J. 1994)

- k_{ij} value range : 0.77 to 0.97 for NP + NP systems

k_{ij} value failed to match underlying assumption within meaningful range (-1 to 1) of binary parameters for NP + AS polymer solubility

Complex phase behavior - LLE calculation for HDPE + hexane

Complex phase behavior – LLE of PB + PS blends

H

Phase behavior of water + decane system

Η

Computational Aspects

		PVT Behavior	Computation speed	Remark	
	PR-WS	Simple	Fast	Can violate basic assumption usir some parameter sets.	
	SAFT	Complex	Slow (10 times NLF-HB)	Extra computation time for balance eqn. solving when two or more types of association	
	NLF-HB	Relatively simple	Relatively fast (4 time PR-WS)	Extra computation time for balance eqn. solving when two or more types of association	

Sensitivity of Binary Interaction Parameters

$$\frac{dP}{dk_{ij}} = \frac{P(1.01k_{ij}) - P(0.99k_{ij})}{0.02k_{ij}}$$
$$\frac{dY}{dk_{ij}} = \frac{y_1(1.01k_{ij}) - y_1(0.99k_{ij})}{0.02k_{ij}}$$

• All the EOS model have small derivatives with respect to paramters -> robust behavior of binary interaction parameters

System	EOS	Temperature	dP/dKij	dY/dKij
Hexane + Hexadecane	PR -WS	293.15	0.04	0.00003
	NLF-HB	293.15	0.62	0.00152
	SAFT	293.15	0.57	0.00092
Hexane +1 -Hexanol	PR -WS	293.15	0.30	0.02600
	NLF-HB	293.15	0.69	0.08100
	SAFT	293.15	0.69	0.00699
Methanol + Water	PR -WS	298.15	0.22	1.52000
	NLF-HB	298.15	0.15	1.09000
	SAFT	298.15	0.26	1.91000

Error increase due to T difference in VLE sets

• System : n-Hexane + 1- Propanol

Т	K _{ij}	PR-WS		SAFT		NLF-HB	
(deg.C)		DP	DY	DP	DY	DP	DY
25	Optimum	1.82	0.0044	1.33	0.002	1.14	0.003
75	Optimum	2.97	0.0177	1.74	0.010	2.92	0.012
75	Value at 25 deg.C	3.27	0.0151	3.85	0.023	2.99	0.019
Increase in error		0.30	-0.0026	2.11	0.013	0.07	0.007

• All three EOS models do not significantly affected by the temperature dependency of parameters

•Among 3 EOS models, SAFT EOS is most sensitive for this specific system

Conclusion

- Pure Properties (58 comp.s) and VLE (82 isotherms) were compared for PR-WS, SAFT and NLF-HB EOS.
- □ For pure components, NLF-HB gives best result due to temperature dependent pure component parameters.
- □ For VLE calculation most EOS considered showed similar degree of prediction.
- □ For AS + AS systems, new extended HB model shows better result than the other two EOS models
- □ For computational aspect, PR-WS EOS is fast and easy, while SAFT is most complex and time-consuming.
- All three EOS model showed robust result with respect to change in interaction parameters

Korea-Japan 2002 World Cup (who will be the winner ?)

Bodhisattva (A.D. 6 to 7)