Motivations

 Mixtures with organic acids have presented difficulties for an EOS approach

Recently developed association models are still not adequate for mixtures with organic acids in EOS frames

The possibility of the extension and the application of Veytsman statistics (1990) was investigated

Introduction

Organic acids generally form dimers in vapor phase

The dimer formations are long been considered only in vapor phase

EOS with Specific Interaction Approaches

Chemical theories : APACT used different hydrogen bonding parameters in each phases

Physical theories : SAFT denoted a large single associative site for dimer formations

Quasichemical theories : NLF-HB EOS cannot describe the dimer formations explicitly

The Composition of Veytsman Statistics

Donors and acceptors distribution

$$\prod_{i} \frac{N_{d}^{i}!}{N_{i0}!} \prod_{j} \frac{N_{a}^{i}!}{N_{0j}!} \prod_{i} \prod_{j} \frac{1}{N_{ij}!}$$

The probability for an acceptor to be placed the HB location of a donor

$$\overline{N_r}$$

The Veytsman statistics

$$\prod_{i} \frac{N_{d}^{i}!}{N_{i0}!} \prod_{j} \frac{N_{a}^{i}!}{N_{0j}!} \prod_{i} \prod_{j} \frac{1}{N_{ij}!} \frac{1}{N_{ij}!} \frac{1}{N_{r}^{N_{HB}}} \exp(-\sum_{i} \sum_{j} \beta N_{ij} A_{ij})$$

Lattice Partition Function

$$\Omega = \Omega_{PHYS} \Omega_{HB}$$

• Ω_{PHYS} : You et al. (1994)

* Ω_{HB} : Proposed extension of Veytsman statistics for both dimers and n-mers

$$\Omega_{HB} = \frac{N_{10}^{D0}!(2!)^{N_{11}^{H0}}}{N_{10}^{D}!(2!)^{N_{11}^{H}}} \prod_{i=1}^{M} \frac{N_{i0}^{H0}!}{N_{i0}^{H}!} \prod_{j=1}^{N} \frac{N_{0j}^{H0}!}{N_{0j}^{H}!} \prod_{i=1}^{M} \prod_{j=1}^{N} \frac{N_{ij}^{H0}!}{N_{ij}^{H}!} (P_{ij})^{(N_{ij}^{H} - N_{ij}^{H0})} \exp(-\beta A_{ij}^{H} N_{ij}^{H})$$

$$P_{ij} = N_{rH} / N_{r}^{2} = (N_{0} + r_{H} \sum_{i=1}^{M} N_{d}^{i} + r_{H} \sum_{j=1}^{N} N_{a}^{j}) / N_{r}^{2}$$

• P_{ij} : Proposed probability of finding an acceptor site j around donor site i for a loosely connected pair ij

✓ For j to be adjacent to i

(1) acceptor j must find a specific site (= $1/N_r$) and

(2) the site is not occupied by physically interacting groups (= N_{rH}/N_r)

Thermodynamic Properties

Pressure and chemical potentials

$$P_{HB} = (kT/V_{H}) v_{HB} \rho \left(2 - \frac{N_{r}}{N_{rH}}\right)$$

$$\frac{\mu_{i}^{HB}}{kT} = \frac{v_{HB} \rho N_{r} r_{Hi}}{N_{rH}} - \ln \frac{N_{10}^{D0}}{N_{10}^{D}} - \sum_{k=1}^{M} d_{k}^{i} \ln \frac{N_{k0}^{HB}}{N_{k0}^{HB0}} - \sum_{k=1}^{N} a_{k}^{i} \ln \frac{N_{0k}^{HB}}{N_{0k}^{HB0}}$$

$$v_{HB} = \sum_{i}^{M} \sum_{j}^{N} (N_{ij}^{H} - N_{ij}^{H0}) / \sum_{i=1}^{C} r_{i} N_{i} \qquad \rho = \sum_{i=1}^{C} r_{i} N_{i} / N_{r} \qquad r_{Hi} = r_{H} (\sum_{k=1}^{M} d_{k}^{i} + \sum_{k=1}^{N} a_{k}^{i}) - r_{i}$$

$$(2N_{11}^{H}) (N_{d}^{1} - 2N_{11}^{H}) (N_{a}^{1} - 2N_{11}^{H}) = (N_{10}^{H} N_{01}^{H})^{2} \exp(-\beta A_{ij}^{H}) N_{rH} / N_{r}^{2}$$

$$N_{ij}^{H} = N_{i0}^{H} N_{0j}^{H} \exp(-\beta A_{ij}^{H}) N_{rH} / N_{r}^{2}$$

The physical parts are given by You et al. (1994)

Physical Parameters

The coordination number : z =10

• Lattice volume : $V_H = 9.75 \ cm^3/mol$

• Pure parameters (r_i , ε_{ii}) : Fitted to saturated liquid density and vapor pressure and correlated ($T_0 = 298.15 \text{ K}$)

 $r_{i} = r_{a} + r_{b}(T - T_{0}) + r_{c}[T \ln(T_{0}/T) + T - T_{0}]$ $\varepsilon_{ii}/k = e_{a} + e_{b}(T - T_{0}) + e_{c}[T \ln(T_{0}/T) + T - T_{0}]$

• Binary parameter (λ_{ij}) : Regressed from VLE data $\varepsilon_{12} = (\varepsilon_{11} \ \varepsilon_{22})^{1/2} (1 - \lambda_{12})$

Hydrogen Bonding Parameters

• The segment number of donors and acceptors : $r_H = 0.05$

$$\begin{split} A^{H}_{ii} &= U^{H}_{ii} - TS^{H}_{ii} \\ A^{H}_{ij} &= (A^{H}_{ii}A^{H}_{jj})^{(1/2)} \\ A^{H}_{ij} &= (0.5A^{H}_{ii}A^{H}_{jj})^{(1/2)} \quad (\text{ for solvation with acid }) \end{split}$$

System	$U^{H}_{ii}/k(\mathrm{K})$	S^{H}_{ii}/k	
Alcohol	-3082	-1.86	
Water	-1626	-2.00	
Acid	-5370	-4.38	
Amine	-1670	-1.26	

Temperature Coefficients of Physical Parameters

Chemicals	e _a	e_b	e _c	r _a	r _b	r _c	Range(K)
Propane	84.774	0.0161	-0.1399	6.827	-0.0005	0.0077	115-345
N-Butane	90.844	0.0242	0.0023	8.362	-0.0014	0.0029	280-405
N-Pentane	94.484	0.0369	0.0189	9.924	-0.0021	0.0012	303-443
N-Hexane	97.278	0.0313	-0.0245	11.460	-0.0015	0.0061	273-473
N-Heptane	99.068	0.0352	-0.0187	13.035	-0.0019	0.0060	273-513
N-Decane	101.689	0.0529	0.0125	17.805	-0.0034	0.0057	368-598
Methanol	134.046	0.0626	-0.2178	2.859	-0.0025	0.0008	223-483
Ethanol	120.628	0.0184	-0.2085	4.326	-0.0038	0.0039	249-489
1-Propanol	118.806	-0.0133	-0.1821	5.844	-0.0047	-0.0038	256-517
1-Butanol	117.716	-0.0107	-0.1220	7.459	-0.0050	-0.0049	284-544
1-Pentanol	117.027	-0.0082	-0.0992	8.980	-0.0030	0.0027	273-573
Acetic acid	140.713	0.0735	0.0874	5.090	-0.0019	-0.0088	298-569
Propionic acid	132.068	0.0448	0.0527	6.631	-0.0009	-0.0015	292-582
Pentanoic acid	126.562	0.0268	-0.0149	10.013	-0.0067	-0.0177	303-623
Water	372.129	-0.4030	0.1231	1.811	0.0001	-0.0028	273-493
Ethylamine	107.762	0.0092	-0.0838	4.872	-0.0012	0.0014	192-442
Butylamine	111.101	0.0149	-0.0347	8.127	-0.0004	-0.0064	224-514

Comparison of the Present Model with Data

System	T(K)	λ_{12}	AADP	AADY	System	T(K)	λ_{12}	AADP	AADY
Propane + methanol	310.7	0.032	1.859	0.0073	Methanol + ethanol	298.15	0.013	1.030	0.0213
Propane + ethanol	325.0 – 350.0	-0.020 – -0.043	6.982	0.0189	Methanol + 1-propanol	333.17	0.029	0.320	0.0232
N-Butane + methanol	323.15 – 373.15	0.029 – 0.047	2.008	0.0285	Methanol + water	298.15 – 473.15	-0.187 - -0.041	2.645	0.0181
N-Pentane + 1-propanol	313.15	0.020	1.591	0.0059	Ethanol + 1-propanol	323.15 – 353.15	0.029 – 0.032	0.388	0.0233
N-Pentane + 1-pentanol	303.15	0.014	5.495	0.0006	Ethanol + water	323.15	-0.141	1.295	0.0074
N-Hexane + ethanol	298.15 – 328.15	0.002 – 0.014	1.115	0.0289	1-Propanol + water	363.15	-0.074	0.864	0.0099
N-Hexane + 1-propanol	338.15	0.017	2.149	0.0097	Acetic acid + propionic acid	313.15	0.006	1.211	0.0144
N-Heptane + acetic acid	293.15 – 313.15	0.052 – 0.057	2.747	0.0194	Water + acetic acid	293.15 – 363.05	-0.183 - -0.133	0.733	0.0104
N-Heptane + pentanoic acid	373.15	0.019	1.536	0.0072	Water + propionic acid	313.15 – 323.15	-0.138 - -0.131	3.854	0.0146
N-Decane + 1-propanol	368.15	0.004	3.079	0.0154	Ethylamine + ethanol	293.15	-0.199	3.235	0.0053
N-Decane + 1-butanol	358.15 – 388.15	0.008 – 0.010	1.253	0.0037	Butylamine + 1-propanol	328.15	-0.100	1.713	0.0056
Avg.								2.141	0.0136

Figure. Comparison of present results and SAFT with experimental data for water + acetic acid at different temperatures

Figure. Comparison of present results and SAFT with experimental data for acetic acid + propanoic acid at 313.15 K

Figure. Comparison of present results and SAFT with experimental data for 1-propanol + water at 363.15 K

Figure. Comparison of present results with experimental data for n-heptane + acetic acid at different temperatures

Figure. Comparison of present results with experimental data for butylamine + n-heptane at different temperatures

Conclusions

The Veytsman statistics is extended to dimer formations

The extended statistics is combined with the Lattice Fluid Theory of You et al.(1994) to give revised NLF-HB EOS

The NLF-HB EOS is applied to binary mixtures of alkane, alcohol, acid, amine, and water

Good agreements with experimental data were obtained