

Biomass Thermochemical Conversion OBP Efforts

Paul Grabowski
Office of the Biomass Program

Presented to

Technical Advisory Committee

March 11, 2004

Washington, D.C.

Outline - Biomass Gasification

- I. History and Definitions
- II. The Technology

An array of:

- Benefits
- Gasifier designs
- Feeding & handling systems
- Conversion Systems for gas to products
- Specific problems associated with Biomass Syngas cleanup.
- Integration of biomass gasifiers w/ existing industrial systems

III. Strategic Direction

- EERE Priorities vs. OBP Goals
- OBP Level

IV. Programmatic Goals and Barriers

- Decrease cost of products
- Biorefinery by 2008, 2010
- WBS and Barriers. BLG fits in both TC and Integrated Biorefineries

V. Management Approach

- Implement MYTP
- Develop & Strengthen Partnerships with Industry
- Utilize & Strengthen: Core R&D; Technical knowledge
- Implement Stage Gate process

History and Definitions

History

- 1839 Bischof gas producer
- 1861 Siemens gasifier widespread adoption
- 1890 1920 "colonial" use of biomass fuels in gas engine/suction gasifiers –
 100's of MW installed (manufacturers Crossley/Mellinger etc)
- 1926 Winkler fluidized bed gasifier scaleable technology
- 1930 Comite Internationale du bois vehicle gasifier development
- 1940 1948 15 GW of mobile gasifiers (600,000 vehicles x 25 kW)
- 1970s MSW gasification as an energy source and volume reduction
- 1973 vehicle gasifiers (again!), apps to developing country stationary power started
- 1980 Second oil shock large demonstration projects for liquid fuels e.g. methanol
- 1980s both IGCC and synfuels from gasification proven
 - Coolwater IGCC (coal) proof of concept (EPRI/DOE)
 - SASOL (coal) Fischer Tropsch liquids
 - Eastman Chemicals acetic acid production from coal gasification
- 1990 Environment and renewable power objectives

History and Definitions

History and Definitions

Basic Definitions

Pyrolysis

- Thermal conversion (destruction) of organics in the absence of oxygen
- In the biomass community, this commonly refers to lower temperature thermal processes producing liquids as the primary product
- Possibility of chemical and food byproducts

Gasification

- Thermal conversion of organic materials at elevated temperature and reducing conditions to produce primarily permanent gases (CO, H2, CH4, etc.), with char, water, and condensibles as minor products
- Primary categories are partial oxidation and indirect heating

	Company	Technology/Scale	Status
1970's	Garrett Energy and Eng. SERI Texas Tech Univ Battelle Columbus Lab	Rapid pyrolysis - 6 tpd Downdraft gasification - laboratory 02 fluid bed - laboratory Indirectly heated - laboratory Indirectly heated - 9 tpd	inactive inactive inactive Initial licensing of technology inactive
1980's	Battelle Columbus Lab. Univ. Missouri - Rolla Inst. of Gas Tech. SERI/SynGas, Inc. MTCI Univ. Of Nebraska Wright Malta Texas Tech Univ. PNL Dynecology, Inc.	Indirectly heated - 20 tpd High P. air/O2 fluid bed - 10 tpd High P. air/O2 downdraft - 20tpd Indirectly heated - 2.4 tpd Indirectly heated - laboratory Indirectly heated rotary kiln - 6tpd O2 fluid bed High P catalytic - laboratory O2 - updraft -cofeed w coal - 5 tpd	Initial technology licensing development inactive development inactive inactive inactive inactive inactive inactive inactive
1990's	IGT/Westinghouse PICHTR Westinghouse Battelle Columbus MTCI FERCO MNVAP Iowa State University Carbona Community Power FlexEnergy EPA - Camp Lejune Cratech	High P. Air fluid bed/ Filter - 10 tpd IGT gasifier - Hawaii - 100 tpd IGT gasifier - Hawaii - 100 tpd Indirect - gas turbine - 20 tpd Indirect - laboratory Vermont Indirect - 350 tpd Carbona gasifier - 75 MW Air fluid bed - 25 tpd Air fluid bed - 3.8 MW Downdraft - 25 kW Downdraft - turbine - 30 kW Downdraft - ICE - 1 MW High P. air fluid bed - 10 tpd	project complete project complete project complete project complete project complete project complete commercial project development inactive – design only active project active project active project active project active project active project
2000- 2001	Gas Technology Inst. Nexant/PRM MTCI Carbona Community Power Flex Energy	w/ Calla - power air blown - power w/ Georgia-Pacific - black liquor Air fluid bed - 3.8 MW Downdraft - 25 kW Downdraft - turbine - 30 kW	feasibility feasibility commissioning design operating design

An Array of Benefits

- Efficiency
 - Nearly double existing biopower industry
 - · Access to efficiency/economy of scale via cofiring/cofueling
- Environmental
 - Low emissions due to turbine/fuel cell requirements
 - Closed carbon cycle
 - Increased environmental regulation favors gasification/pyrolysis
- Economic
 - Decreased COE over today's biopower
 - Potentially competitive with fossil assuming tax credits
 - Rural economies
 - Pulping sector an immediate beneficiary due to needed capital replacements.
 - Economic activity (Investment of \$15 Billion resulted from PURPA)
- Synergistic with fossil fuel developments
 - Liquid fuels billions invested in syngas to fuels/chemicals
 - Electricity turbines, fuel cells, CHP (cofiring with natural gas possible),
 - Hydrogen production
 - Potential for CO2 withdrawal via sequestration
- Versatility
 - · Wide range of feestocks
 - Wide range of products

Gas Cleanup – Coal vs. Biomass

- Use coal gasifier cleanup technology for biomass
 - Issues
 - · Coal cleanup designed for large, integrated plants
 - Extensive sulfur removal not needed for biomass
 - · Biomass tars very reactive
 - Wet/cold cleanup systems produce significant waste streams that require cleanup/recovery – large plant needed for economy of scale for cleanup/recovery
 - Biomass particulates high in alkali
- Feed biomass to coal gasifiers
 - Issues
 - Feeding biomass (not just wood) many commercial coal gasifiers are entrained flow requiring small particles
 - Gasifier refractory life/ash properties biomass high in alkali
 - Character/reactivity of biomass tars may have unknown impact on chemistry/cleanup
 - Volumetric energy density a potential issue
 - High reactivity can plug coal feeder systems.
 High temperatures at the entrance → the biomass softens, partially liquefies, then turns to a clump

Strategic Direction

DOE's Strategic Goal

To protect our national and economic security by promoting a diverse supply of reliable, affordable, and environmentally sound energy

EERE Strategic Goals

Dramatically reduce or even end our dependence on foreign oil
 Create the new domestic bioindustry

OBP Program Goal

Develop biorefinery-related technologies to the point that they are cost- and performance-competitive and are used by the nation's transportation, energy, Chemical, and power industries to meet their market objectives.

2005: Demonstrate an integrated process for fuels production from biomass

2007: Complete technology development necessary to enable start-up demonstration of a biorefinery producing fuels, chemicals, and power

2010: Help U.S. industry to establish the first largescale biorefinery based on agricultural residues

Technical Cost Goals

- \$\$ MMBtu syngas
- Industrial viability of four commodity scale products

Strategic Direction

Strategic Direction

^{*} Examples: Hydrothermal Processing, Liquefaction, Wet Gasification

Programmatic Goals / Barriers

Objective – Thermochemical Platform

To produce inexpensive, clean intermediate products from biomass that are compatible with existing and advanced processes for fuels, chemicals, and power

Technical Cost Goals

- \$6 per MMBtu syngas (\$7.58 per MMBtu syngas)
- \$0.07per lb sugars
- Industrial viability of four commodity scale products

Technical Barriers

Biomass Thermochemical Conversion

Gasification

- Feed & Pretreatment
- Gasification
- Gas Cleanup & Conditioning
- Syngas Utilization
- Process Integration
- Sensors and Controls

Pyrolysis

- Oil Handling
- Oil Properties
- Oil Commercial Properties

Black Liquor Gasification

- Containment
- Mill Integration
- Fuels Chemistry
- Sensors and Controls

Industrial Linkages

Why Pulp & Paper Industry??

- P&P industry has feed supply solved
- Existing infrastructure for feed and products
- Industry seeking added-value products
- Forest biorefinery
 - Transformational change to existing industry
 - Efficiency gain
 - » Expansion of Black Liquor gasification strategy (Agenda 2020)
 - » Focuses on next-generation changes
 - » Up to 95% conversion of incremental feed to fuels/products (see Chemrec slides)
 - Economic gain
 - » "New" products fuels/chemicals
 - Conservation
 - » Reduces fossil fuel consumption for energy and fuels/chemicals

Industrial Linkages

Why Petroleum/Petrochemical Industries??

- Interested in biomass
- Renewable source of hydrogen for traditional and bio-refineries
- Key issue is quantities of biomass available and cost
- Existing infrastructure for feed and products
- Has many final conversion issues solved
- Industry seeking added-value products
- Xform a Petroleum Refinery into a Biorefinery
- Outreach underway

Industrial Linkages

Why Gasification Technology Vendors??

- Interested in biomass
- Actively examining various market entry points
- Would like to be omnivorous w/ respect to opportunity feedstocks
- Existing infrastructure for moving technology into marketplace
- Comfortable with "unknowns"
- Have some initial links to "user industries"

Core R&D and Technical Knowledge

NBC Partnership

- Core R&D
- Cooperative R&D
- Process Development Units

Technical knowledge (Laboratory and U.S. Industry)

- Industry Partnership Develop Efforts
- Cooperative R&D;
- Process Development Units
- Demonstration Projects

DOE/USDA 2004 Solicitation — Thermochemical Areas

Cleanup & Conditioning

- Syngas cleanup (tars, N, alkali, heavy metals, Sulfur)
- Oils

Thermochemical Conversion

- Fundamental breakthrough research
- Conversion to fuels, chemicals

Petroleum refinery evaluations

Black Liquor Gasification

Kraft

END

Outline - DETAILED

l.		History and Definitions			
II.		he Technology			
	_	An array of:			
		 Gasifier designs (Single slide on various types and applications) 			
		Feeding & handling systems			
		Conversion Systems for gas to products			
	_	Specific problems associated with Biomass TC systems			
	_	Specific problems associated with Biomass Syngas cleanup. (slide from Rich/Ralph)			
	_	Integration of biomass gasifiers w/ existing industrial systems (pulp mills, petro refinery, chemical plants, etc.)			
III.		Strategic Direction			
	_	EERE Priorities are OBP Goals			
		Decrease U.S. Dependency on Foreign Oil			
		Develop Bioenergy Industry			
	_	OBP Level			
IV.		Programmatic Goals and Barriers			
	-	Decrease cost of products			
	-	Biorefinery by 2008, 2010			
	-	WBS and Barriers. BLG fits in both TC and Integrated Biorefineries			
٧.		Management Approach			
	-	Develop & Strengthen Partnerships with Industry			
	-	Implement MYTP			
		Dependent on approps			
	-	Utilize: Core R&D Cooperative R&D Process Development Units; Demonstration Projects			
	_	Utilize & strengthen technical knowledge within both Laboratory and U.S. Industry			
	_	Stage Gate process			
		Active Management			
		Milestones			

Biomass vs. Coal Properties

	Biomass 1	Biomass 2	Coal 1	Coal 2	Tar Sands
Name	Wood	Red Corn Cob	Grundy, IL. No 4	Rosebud, MT	Athabasca
Classification			HvBb	sub B	Bitumen
Proximate Analysis, wt% Dry					
Moisture	25-60	16	8.16	19.84	
Volatile Matter	77-87	ca. 80	40.6	39.02	
Fixed Carbon	13-21		45.47	49.08	
Ash	0.1-2	4	13.93	9.16	
Ultimate Analysis, wt % Dry					
C	50-53	45	68.58	68.39	83.6
н	5.8-7.0	5.8	4.61	4.64	10.3
N	0-0.3	2.4	1.18	0.99	0.4
CI	.001-0.1		0.12	0.02	
О	38-44	42.5	6.79	16.01	0.2
S	0-0.1	0	4.76	0.79	5.5
Ash	0.1-2	4	13.93	9.16	
H/C Atomic Ratio	1.4-1.6	1.5	0.8	0.81	1.47
HHV, Dry, Btu/lb	8,530-9,050	7,340	12,400	11,684	17,900

U.S. Department of Energy Efficiency and Renewable Energy Gas Cleanup Technologies

	Advantages	Disadvantages				
Particulate Removal						
Wet Scrubbing	 Proven technology 95% removal of > 1µm particles 	Aqueous waste streamAerosolsThermodynamic efficiency losses				
 Cyclone separation Proven technology - > 90% removal of > 5µm particulate High T operation 		Ineffective for sub-micron particles				
Electrostatic Precipitators (wet and dry)	Large-scaleHigh T operationSmall particles (<0.5 µm)	High cost – capital and operating				
Barrier Filters	High T operation Removes small particles	 Developing technology – materials issues vs. T High pressure drop Backpulsing/blinding 				
Tar Removal/Conversion						
Wet Scrubbing	Proven technology for large scale Commercially available	Aqueous waste streamLoss of tar fuel valueThermodynamic efficiency losses				
Catalytic Steam Reforming	Improved heat integration w/ gasifier	gration w/ gasifierDeveloping technologyCatalyst disposal				

TC Platform Funding

Source: www.mbe.doe.gov/budget

Note: Interior does not include crosscutting activity funding

Syngas Platform Cost Curve for Fischer Tropsch Liquids

Thermochemical Conversion Of Biomass and Black Liquor

Previous Partnerships

Thermochemical Platform Gate Review

- First time applied outside of sugars platform
- Reviewed six projects
 - Gasification, Gas Cleanup, Biorefinery Utilities, Wet Gasification, Microchannel Reactor, Pyrolysis Oil Upgrading
 - Seven Industry Reviewers (oil, gas, pyrolysis)
- Outcomes
 - Terminate two projects
 - Biorefinery Utilities
 - Microchannel Reactor
 - Significantly modify two projects
 - Slightly modify two projects

Gasification Demos – Lessons Learned

Lesson

- Need for on-going in-depth technical review
- Feedstock/feed system suitability
- Comprehensive environmental assessment
- Transfer of technologies from innovators to commercializers
- Disparity in development and commercialization time-scales

Action

- Implementation of Stage-Gate management
- Comprehensive List of Barrier areas identified
- Information for regulatory/permitting/financing entities – e.g. conceptual designs
- Industry outreach & solicitations

Pulp Mill Possibilities

Outcomes of Government Actions

- Primary Energy doubled in 30 years.
- Electricity Production tripled in 10 years (1% of U.S. Generating Mix).
- Ethanol Fuels Production increased a factor of 16 in 20 years and capacity is increasing fast (2.89 bi gallons installed/construction 2002).
- Forest Products Energy Self-sufficiency increased by nearly 50% in 20 years.
- Residential heating with biomass replaced heating oil & grew by a factor of 2 from 1970-1990. In 2000 it returned to 1970 levels with modern pellet stoves and commercial heating with biomass increased.
- Municipal solid waste management:
 - Safe and responsible.
 - Recycling rates tripled in 20 years.
 - MSW/landfill primary energy increased by a factor of 6 in 20 years.
- Significant emissions reductions, including carbon, and landfill reduction were achieved.
- Significant economic development including rural (\$15M invested, 66,000 jobs).