Isothermal Vapor-Liquid Equilibria for n-pentane+2-butanol System near the Critical Region

Youngdae Kim, Hwayong Kim School of Chemical Engineering, Seoul National University

Introduction

- VLE and critical point data are of great significance in the various industrial fields to design, simulate and optimize processes.
- Alkane + alkanol phase equilibrium data have been extensively investigated at low pressures, but only a few data are available for elevated temperature and pressure.
- Furthermore, near the critical region, VLE measurements for polar and non-polar mixtures are especially important because the properties of such mixtures cannot be predicted from the pure component values.
- In this work, we have measured the vapor-liquid equilibrium data for the *n*-pentane + 2-butanol system.

Apparatus and Materials

Materials

n-Pentane : Fluka with 99.5% purity 2-Butanol : Aldrich with 99.5% purity

Thermometer

Probe : 5614, Indicator : 1560 supplied by Hart Scientific Co. (accuracy $\pm 0.03K$ in $373 \sim 673K$)

Pressure tranducer

STJE/1833-2 supplied by Sensotec Co. (range <1000 psia, accuracy $\pm 0.1\%$)

Gas Chromatography

Detector : TCD Column : Porapak Q in 0.95 cm O.D. and 85 cm long

Apparatus and Materials

Apparatus and Materials

Thermodynamic Models

PRSV

$$P = \frac{RT}{V-b} - \frac{a}{V(V+b) + b(V-b)}$$

$$a(T) = a(T_c)\alpha(T) \qquad b = 0.07780\frac{RT_c}{P_c}$$

$$a(T_c) = 0.45724\frac{(RT_c)^2}{P_c} \qquad \alpha(T) = [1 + \kappa(1 - \sqrt{T/T_c})]^2$$

Wong-Sandler Mixing Rule

$$b_m = \frac{\sum_i \sum_j x_i x_j \left(b - \frac{a}{RT} \right)_{ij}}{1 - \sum_i x_i \frac{a_i}{b_i RT} - \frac{\underline{A}_{\infty}^E}{CRT}} \qquad a_m = b_m \left(\sum_i x_i \frac{a_i}{b_i} + \frac{\underline{A}_{\infty}^E}{C} \right)$$

NRTL Activity coefficient Model

$$\frac{A_{\infty}^{E}}{RT} = \sum_{i=1}^{n} x_{i} \frac{\sum_{j=1}^{n} x_{j} G_{ji} \tau_{ji}}{\sum_{k=1}^{n} x_{k} G_{kj}} \qquad G_{ji} = \exp(-\alpha_{ji} \tau_{ji}) \qquad \tau_{ji} = \frac{g_{ji}}{RT}$$

Thermodynamic Models

Multi-Fluid Nonrandom Lattice Fluid with Hydrogen Bonding Equation of State (MF-NLF-HB)

$$P = \frac{1}{\beta V_{H}} \left\{ \frac{z}{2} \ln \left[1 + \left(\frac{q_{M}}{r_{M}} - 1 \right) \rho \right] - \ln(1 - \rho) - (v_{H} - v_{H0}) \rho + \frac{z}{2} \sum_{i=1}^{c} \theta_{i} \left(\frac{\tau_{0i}}{\sum_{k=0}^{c} \theta_{k} \tau_{ki}} - 1 \right) \right\}$$

where $\tau_{ji} = \exp \left[\beta \left(\varepsilon_{ji} - \varepsilon_{ii} \right) \right]$

The coordination number : z = 10

Lattice volume : $V_H = 9.75 \text{ cm}^3/\text{mol}$

Pure parameters (r_i, ε_{ii}):

$$r_{i} = r_{a} + r_{b} (T - T_{0}) + r_{c} [T \ln(T_{0} / T) + T - T_{0}]$$

$$\varepsilon_{ii} / k = e_{a} + e_{b} (T - T_{0}) + e_{c} [T \ln(T_{0} / T) + T - T_{0}]$$

• Binary parameter (λ_{ij}) : $\mathcal{E}_{12} = (\mathcal{E}_{11} \mathcal{E}_{22})^{1/2} (1 - \lambda_{12})$

Correlation

PRSV-WS-NRTL

NRTL Parameters (468.15K)

α	g ₁₂ (cal/mol)	g ₂₁ (cal/mol)
0.3	483.15	650.40

MF-NLF-HB

	E_a	E _b	E _c	R _a	R _b	R _c
n-Pentane	64.5926	0.4962	1.3096	14.9330	-0.8508	-2.3118
2-Butanol	76.4709	0.2867	0.5009	7.6963	-0.0896	-0.3451

Correlation

Comparison of measured data with correlation values for n-pentane (1) + 2-butanol (2)

•, critical points; *—*, calculated by PRSV-WS EOS; *—*, calculated by MF-NLF-HB EOS.

Critical locus

Critical locus and pure vapor pressure curve for npentane (1),2-butanol(2) and critical locus (3):

•, critical points;

O, pure vapor pressure points from this work;

△, critical points of pure components from the data bank by Reid et al.;

..... (3), interpolation curve of critical points.

Critical locus

Critical locus and pure vapor pressure curves for n-pentane (1), ethanol (2), 2butanol (3):

●, this work;
○, Seo et al. [Fluid Phase Equilib. (2000)
172];
△, critical points of pure components ;
……, interpolation curve

Correlation Errors

T(K)	Model	λ_{ij}	$100\sqrt{SQP/N_T}$	$\sqrt{SQY/N_T}$
468.15	PRSV-WS	0.02017	1.14	0.019
	MF-NLF-HB	-0.01799	0.96	0.044
		•		
483.15	PRSV-WS	0.01562	1.23	0.018
	MF-NLF-HB	-0.02262	0.75	0.045
		•		
498.15	PRSV-WS	0.02346	0.46	0.022
	MF-NLF-HB	-0.02361	1.19	0.044
		•	•	
513.15	PRSV-WS	0.00811	1.15	0.020
	MF-NLF-HB	-0.03709	0.33	0.026

$$SQP = ((P_{cal} - P_{exp}) / P_{exp})^2$$
 $SQY = (y_{1.cal} - y_{1.exp})^2$

Conclusion

- The isothermal VLE data for the system n-pentane + 2-butanol were obtained at 468.15, 483.15, 498.15 and 513.15 K.
- Critical points were found at 483.15, 498.15 and 513.15K.
- The MF-NLF-HB EOS and PRSV EOS combined with NRTL model and Wong-Sandler mixing rules for correlating parameters resulted in a good agreement with experimental data in the sub-critical regions. However, the MF-NLF-HB EOS has shown larger deviation in experimental data near the critical region than PRSV EOS.
- The fitted parameter from VLE data near critical region gave a guidance to calculate and predict critical loci.

