2004 KIChE and KSIEC Meeting

Phase Behavior of Polycaprolactone in Dimethyl Ether, Dimethyl Ether + carbondioxide, HCFC-22, HCFC-22 + Carbondioxide

Tae-Hyoung Kim, Ji-Young Park*, Jong-Sung Lim and Ki-Pung Yoo

Hoseo University, Asan City, Korea 09:20~10:50 10. 29, 2004

Dept .of Chemical Engineering, Sogang University KIST*

Objectives

The phase behavior of PCL in DME, DME+CO₂, HCFC-22, HCFC-22+CO₂

CO₂ could be used as an anti-solvent, and the cloud point of PS and PCL could be controlled by changing the concentration of CO₂

Introduction — what is the supercritical fluid?

Phase Diagram of Polymer-Solvent

- 1) The large molecular size
 differences between a polymer
 and an organic solvent
 induce the complicated
 phase behaviors
- 2) In the vicinity of the solvent critical temperature(Tc), a homogeneous polymer solution can spilt into polymer-rich phase and solvent-rich phase. (LCST behavior)

Fig. 1. Phase behavior of polymer-solvent

Static method

Advantage
easy to make equilibrium state
no clogging
a small leakage available

Disadvantage
fixed path length
- cannot measure the high
solubility of solution
high cost

Fig. 2. Schematic diagram of static method reactor

Experimental Materials - Polycarprolacton

Table. Physical properties of solvents and polymers

Solvent	M.wt	Tc(K)	Pc(MPa)	Company
Dimethylether	46.06	400.00	5.24	Aldrich Co.
Chlorodifluoromethane	<i>84.46</i>	369.30	<i>4.97</i>	Aldrich Co.

Polymer	M.wt	Tm(K)	Company
Polycarprolacton	14,000	331.15 – 333.15	Aldrich Co.

Experimental Apparatus

- (1) variable-volume view cell; (2) monitor; (3) air oven; (4) CCD camera;
- (5) halogen light source; (6) pressure generator; (7) magnetic stirrer;
- (8) fluid transport line

Fig. 3. Schematic diagram of high-pressure variable-volume view cell

Experimental Apparatus

Fig. 4. View of experimental variable volume view cell

Investigation of LCST Curve

(a) Homogeneous Polymer Solution

(b) Cloud Point

Fig. 5. Visual Determination of L-LL Phase Transition

Results

Polycaprolactone + Dimethyl Ether, Polycaprolactone + HCFC-22

PCL(Mw=100,000) + DME

PCL(Mw = 100,000) + HCFC-22

Results

$PCL + DME + CO_2, PCL + HCFC-22 + CO_2$

Concluding Remarks

Using variable volume view cell, visual investigation of L-LL coexistence curve was performed for polymer-solvent system.

The correlated results are in good agreements with the experimental data.

The molecular weight of the solvent was increased, the LCST phase behavior was observed

CO₂ could be used as an anti-solvent, and the cloud point of PCL could be controlled by changing the concentration of CO₂