Application of Multi Fluid Nanrandom Lattice Fluid Model to Complex Systems

열역학 물성 연구회 2004년 1월 29일

신헌용

서울산업대학교 화학공학과

Historical Background of MF-NLF-HB EOS NLF EOS

Fluid Phase Equilibria, 93, 193(1994): 93, 215(1994): 95, 2773(1995): 151, 191-198 (1998) J. of Supercritical Fluids (1993, 1995) Int. J. of Thermodynamics (1995) etc.

NLF-HB EOS

Fluid Phase Equilibria, 158, 143-149, (1999) Fluid Phase Equilibira, 4883, 1-9 (2001)

MF-NLF EOS

Bull. of Korea Chem. Soc.18, 841-850 (1997): 18, 965-872 (1997) Fluid Phase Equilibria, 150-151, 191 (1998), etc

MF-NLF-HB EOS

J. of Supercritical Fluids, 189, 49-61. (2001) Korean J. Chem. Eng. 20, 911-915 (2003) • The NLF-HB Equation of State

$$p = \frac{1}{\beta V_H} \left\{ \frac{z}{2} \ln \left[1 + \left(\frac{q_M}{r_M} - 1 \right) \rho \right] - \ln (1 - \rho) - (v_{HB} - v_{HB0}) \rho \right\} - \frac{z \varepsilon_M}{2 V_H} \theta^2$$

where

$$\varepsilon_{M} = \frac{1}{\theta^{2}} \left[\sum \sum \theta_{i} \theta_{j} \varepsilon_{ij} + \frac{\beta}{2} \sum \sum \sum \theta_{i} \theta_{j} \theta_{k} \theta_{l} \varepsilon_{ij} \left(\varepsilon_{ij} + 3\varepsilon_{kl} - 2\varepsilon_{ik} - 2\varepsilon_{jk} \right) \right]$$
$$\varepsilon_{ij} = \left(\varepsilon_{ii} \varepsilon_{jj} \right)^{1/2} \left(1 - \lambda_{ij} \right)$$

• The MF-NLF-HB Equation of State

$$P = \frac{1}{\beta V_{\rm H}} \left\{ \frac{z}{2} \ln \left[1 + \left(\frac{q_{\rm M}}{r_{\rm M}} - 1 \right) \rho \right] - \ln (1 - \rho) - (v_{\rm HB} - v_{\rm HB0}) \rho + \frac{z}{2} \sum_{i=1}^{c} \theta_i \left(\frac{\tau_{0i}}{\sum_{k=0}^{c} \theta_k \tau_{ki}} - 1 \right) \right\}$$

Liquid Liquid Equilibiria of Polymer Solutions -LLE of high Pressure -LLE of high molecular weight component

High Pressure VLE of hydrogen bonding components -water + hydrocarbon systems -critical loci

Liquid-Liquid Equilibria (LLE)

Three Different Types of chemical potentials as a function of composition in Liquid-Liquid Equilibria

Fig. Chemical Potential of each component as a function of composition in a binary system where phase splitting occurs

	E _a	E _b	E _c	R _a	R _b	R _c
	Κ	-	-	cm ³ /mol [*] or, cm ³ /g ^{**}	cm ³ /mol K	cm ³ /mol K
Pentane	93.98580	0.00956	-0.04549	9.60920*	.00007	.00396
Hexane	96.84253	0.01474	-0.03550	11.07715*	00017	.00391
Polyisobutylene	129.80899	.09884	-	0.10311**	-	-
Polyethylene	126.19111	.07192	-	0.11320**	-	-
Polybutadiene	119.88012	.16455	-	0.10344**	-	-
Polystyrene	130.90941	.08278	-	0.06010**	-	-

Table . Energy and size parameters of MF-NLF EOS

$$\mathcal{E}_{ii} / k = e_a + e_b (T - T_0) + e_c [T \ln(T_0 / T) + T - T_0]$$

$$r_i = r_a + r_b (T - T_0) + r_c [T \ln(T_0 / T) + T - T_0]$$

Binary parameters and error % for liquid-liquid equilibria of polymer solution

System .	Range		Fitting parameter for binary parameter ($\lambda_{12} = a + bT + cT^2$)			Error %	
	T(K)	P(MPa)	а	b	С	ΔP	ΔΤ
PE/hexane	421.15~ 433.15	6.0	-4.64488	1939.28	-204.196	-	0.34
PIB/pentane	374.15~ 476.15	1.2~ 23.6	-0.96750	514.660	-71.8000	2.47	-
PIB/hexane	413.15~ 493.15	1.1~ 15.1	-0.85310	415.320	- 54.2440	5.15	-
PE/pentane	393.15~ 493.15	6.9~ 22.3	-0.28190	184.780	-31.6960	2.48	-
PBD/PS	350.83~ 399.47	0.1~101.3	0.00944	-1.20430	0	-	1.42

 $\Delta P = \frac{1}{N} \left(\left| P^{\exp} - P^{\operatorname{cal}} \right| / P^{\exp} \right) \times 100 \qquad \Delta T = \frac{1}{N} \left(\left| T^{\exp} - T^{\operatorname{cal}} \right| / T^{\exp} \right) \times 100$

Fig. Calculated and experimental temperature-pressure-volume relations of PIB.

Fig. LLE of PE (Polyethylene)/Hexane solution.

Fig. LLE of PIB (Polyisobutylene)/n-Pentane System.

Fig. LLE of PIB (Polyisobutylene)/n-Hexane System.

Fig. LLE of PE (Polyethylene)/n-Pentane.

Fig. LLE of PBD (polybutadiene)/PS(Polystyrene) blend.

High Pressure VLE

-water + hydrocarbon systems (near critical region)-critical loci

Pure Parameter Estimation

Previous Method

Pure component below its critical point

Liquid densities and vapor pressures were used for each Isotherm

 $\mathcal{E}_{ii} / k = e_a + e_b (T - T_0) + e_c [T \ln(T_0 / T) + T - T_0]$ $r_i = r_a + r_b (T - T_0) + r_c [T \ln(T_0 / T) + T - T_0]$

New Method

(1) Determined volume parameter at its critical point

$$\left(\frac{\partial P}{\partial \rho}\right)_T = 0 \qquad \qquad \left(\frac{\partial^2 P}{\partial \rho^2}\right)_T = 0$$

(2) Energy parameters were obtained from experimental vapor pressure data for each isotherm

$$\varepsilon_{11}/k = E_a + E_b T + E_c T^2$$

Table. Size and energy parameters of the MF-NLF-HB EOS

Substance	V*	$E_{a}(\mathbf{K})$	E _b (-)	$E_c = 10^7 (\mathrm{K}^{-1})$
water	23.07	150.9	-0.02007	-736.0
heptane	141.4	83.07	0.02899	-7.088
decane	190.5	83.73	0.04303	-117.7
dodecane	219.5	83.46	0.04705	-103.7
benzene	94.78	97.56	0.03775	-246.4
toluene	112.2	97.81	0.03291	-130.7
<i>p</i> -xylene	129.8	95.54	0.03879	-145.1
ethylbenzene	127.4	97.86	0.03018	-50.78

$$\mathcal{E}_{11}/k = E_a + E_b T + E_c T^2$$

Fig. Vapor Pressure of water

Fig. Saturated density of water

Fig. Phase behavior of water + decane system

Table. Binary parameters and average deviation for the MF-NLF-HB EOS

System	T (K)	k ₁₂	vapor-liquid		fluid I-fluid II	
(1) + (2)			^a ΔX [™] 10 ²	^b ΔY ∎10 ²	$^{\mathrm{c}}\Delta\mathrm{X}^{\mathrm{I}}$ 10 ²	$^{d}\Delta X^{II_{\textcircled{P}}}10^{2}$
water +	573.2	0.231	7.11	2.26	0.0895	2.81
decane	593.2	0.222	7.47	1.77	0.136	0.961
water +	603.6	0.213	7.59	1.75	2.42	4.03
dodecane	633.2	0.210	8.82	1.61	5.01	1.82
water +	623.2	0.117	-	-	0.233	-
heptane	628.2	0.102	6.87	1.23	2.304	1.40
water + benzene	553.2	0.045	-	-	0.888	1.27
	579.2	0.030	-	-	1.91	0.793
	603.2	0.053	-	-	3.70	1.37
	553.2	0.088	-	-	0.306	0.626
water +	573.2	0.078	-	-	0.450	1.11
	583.2	0.060	-	-	0.379	0.906
water + ethylbenzene	553.2	0.107	-	-	0.150	0.924
	583.2	0.093	-	-	0.662	1.51
water + <i>p</i> -xylene	553.2	0.119	-	-	0.248	0.936
	583.2	0.097	-	-	0.459	1.19
$\Delta X = \left x_i^{\text{cal}} - x_i^{\text{exp}} \right / n \qquad \Delta Y = \left y_i^{\text{cal}} - y_i^{\text{exp}} \right / n$						

Fig. Phase behavior of water + heptane system

Fig. Phase behavior of water + benzene system

Fig. Phase behavior of water + toluene system

Fig. Phase behavior of water + ethylbenzene system

Fig. Phase behavior of water + p-xylene system

Critical Loci of water + hydrocarbon system

Binary Interaction Parameters of MF-NLF EoS

Substance	Binary parameter (k _{ij})	Type of critical loci
Water + heptane	0.25	Type III
Water + decane	0.24	Type III
Water + hexadecane	0.24	Type III
Water + benzene	0.25	Type III
Water + toluene	0.21	Type III
Water + ethylbenzene	0.22	Type III
Water + tetralin	0.23	Type II
Water + methylnaphthalene	0.22	Type II

Fig. Critical loci of water + heptane system ($k_{ij} = 0.25$)

Fig. Critical loci of water + decane system (k_{ii} = 0.24)

Fig. Three dimensional phase diagram of water+decane system. A: vapor pressure of decane; B: vapor pressure of water; C, D : critical loci; E1 : gas-liquid equilibria at 580 K; E2 : gas-liquid and liquid-liquid equilibria at 580 K; F1: gas-liquid equilibria at 634 K; F2 : liquid-liquid equilibria at 634 K; G: liquid-liquid equilibria at 700 K

Fig. Critical loci of water + hexadecane system (k_{ii} = 0.24)

Fig. Critical loci of water + benzene system (k_{ij} = 0.25)

Fig. Critical loci of water + toluene system (k_{ij} = 0.21)

Fig.. Critical loci of water + ethylbenzene system (k_{ii} = 0.22)

Fig. Critical loci of water + tetralin system (k_{ij} = 0.23)

Fig. Critical loci of water + 1-methylnaphthalene system (k_{ij} = 0.22)

Concluding Remarks

◆ Good results for high pressure LLE of polymer solutions were obtained

New pure parameter estimation method was applied for near critical VLE of water + hydrocarbon systems