

Dry Cleaning Techniques

Focused on Semiconductor & OLED applications

2006.5

I

www.imt-c.co.kr

Dry Cleaning Techniques

- Limits of wet cleaning
 - > High aspect ratio structure (contact, trench)
 - > Water mark
 - > Corrosion issues (Cu, low-k)
 - > Cluster tool
 - > Environmental issues (water, chemicals)
- Plasma cleaning
- Dry ice cleaning
- Ar aerosol cleaning
- UV lamp cleaning
- Super critical fluid cleaning
- Laser cleaning
- Laser shock cleaning
- Laser plasma cleaning

Plasma cleaning (1)

- Remote plasma cleaning
 - > Ashing = PR stripping
 - > in-situ etch/strip processing
- Direct plasma cleaning : Reactive plasma & Ar plasma
 - > Ar plasma: pre-deposition cleaning by sputtering

Plasma cleaning (2)

*Unique Characteristics

- >> Advantages:
- 1) In-situ dry cleaning
- No moisture effect => no metal corrosion
- 3) Good organic removal
- 4) Surface activation => good bond ability
- >> Disadvantages:
- 1) poor inorganic & strong PR residue removal
- 2) Isotropic cleaning
- 3) Plasma charging
- 4) Non-feasible double-side cleaning

- Atmospheric Plasma cleaning
 - > No vacuum
 - > Conveyer system
 - > Mass cleaning
 - > Only flat surfaces
- *Appl: FPD glass, pre-wiring & molding

Dry Ice cleaning (1)

>> CO₂ dry ice pellets

>> Cleaning type

- 1. Soft dry ice cleaning = CO2 snow cleaning
 - > liquid CO2 => adiabatic expansion at nozzle => dry ice generation and blowing
- 2. Hard dry ice cleaning = CO2 pellet cleaning
 - > Dry ice lump => pellet => high pressure blasting

Jong-Myoung Lee, Laser Engineering Group, IMT Co. Ltd.

Dry Ice cleaning (2)

- Cleaning mechanisms
 - > Physical blasting
 - > Thermal shock (-78.7C)
 - > Sublimation expansion (x800)
 - > CO2 solubility: organic removal
- Applications
 - > Pellet : semi. equipment surface cleaning (Komico)
 - > Snow : FPD surface cleaning (KCTech)

Jong-Myoung Lee, Laser Engineering Group, IMT Co. Ltd.

Ar aerosol cleaning (2)

Cleaning performance

Corrosion removal on Al line

UV lamp cleaning

- UV radiation (Hg lamp) + O2 => O & O3 (O+O2)
- Mechanisms: Direct bond breaking + Chemical reaction
- $\mathbf{E} = \mathbf{h}\mathbf{v} = \mathbf{h}\mathbf{c}/\lambda$
- Organic contamination removal (UV/O3 cleaning)
- Applications: PR hardening, OELD cleaning, surface activation

Super critical fluid cleaning (1)

Super critical region

- SCF characteristics (CO2)
 - > High density (~liquid)
 - > Low viscosity (~gas)
 - > High diffusivity (~gas)
 - > High solubility (CO2)
 - > Easy recycling
- Organic removal process> PR removal
- Nano-scale pattern rinse & dry process
 - > Deep penetration

Super critical fluid cleaning (2)

SCF Cleaning Demonstration

Source: K.T.Lee at Surface cleaning workshop, Boston

>> Co-solvent is essential to enhance the cleaning performance.

What is a laser cleaning?

Definition of laser cleaning

: A process which removes contaminants from a surface by lasersurface interactions

Process characteristics

Unique characteristics

- <u>Precise process</u> which ceases shortly after the laser pulse has ended
- <u>Selective process</u> which can be tuned for the removal of specific substances with a proper selection of wavelength
- Non-contact process which produces no contact wear
- <u>Surface relief process</u> without any mechanical loads
- <u>Controllable process</u> that a specific thickness of materials can be removed
- <u>Environmentally preferable (or clean) process</u> since it is a dry process

Artwork conservation

First laser cleaning shoot at 1975, Venice

(b) After initial laser cleaning

after excavation

(c) After completion of laser cleaning

(a) Before laser cleaning

Before cleaning

After laser cleaning

Medical applications

*** Applications: Dermatology & Dental Surgery

Before treatment

After treatment

Before treatment

After treatment

Before treatment

Before treatment

After treatment

iMT

After treatment

Before treatment

After treatment

Comparison of cleaning processes

	Media blasting	Dry ice cleaning	Wet chemical cleaning	Laser cleaning
In-situ cleaning (op. Off-line)	Νο	Yes	Νο	Yes
Labor required	High	Medium	High	Low
Level of automation	Low	Low	Low	High
Noise level	Medium	High	Low	Low
Substrate wear	Yes	Νο	Medium	No
Environmental hazards	Medium	Medium	High	Low
Post-cleaning waste	High	Low	High	Low

Every cleaning methodologies have their own advantages and drawbacks, so fundamental understanding of the cleaning processes is most important for successful applications.

Cleaning prospect (Semi. Industry)

> Wet & Batch => Hybrid => Dry & Single

- Laser cleaning has unique characteristics and its industrial applications will be expand rapidly.
- IMT holds diverse laser cleaning techniques and systems, i.e. LSC, LPC, SLC, LMC, ISM etc.
- A creative idea from industrial fields is most important to implement the new technology successfully.

