그린 바이오용 나노바이오 센서 대량 제작 기술

홍승훈

서울대학교 물리-천문학부

"Nano-Manufacturting" Problem of Nanowire-Based Devices

Self-Assembly: From Nano to Macro

Macroscale Human Body

Very Successful Results (e.g. IQ etc)

Assembly of Magnetic Nanoparticle Array

Massive Assembly of Carbon Nanotubes

- WHAT YOU SEE IS WHAT WE DO: NO functionalization on CNT, NO flow cell, NO electric field, NO magnetic field, NO catalyst pattern, NO extra structures, NO...
- No hydrophobic interaction because CNTs are in non-polar solvent.
- Previous pioneering works about CNT and nanowire assembly: micromanipulation, electric or magnetic field alignment, assembly onto e-beam generated patterns (J. Liu and R. Smalley) flow cells (C. Lieber at Harvard), growth from catalysts (H. Dai at Stanford).

Kernel Structure & Device Lab

In collaboration with Prof. Nam-Kyung Lee at Sejong University, Korea (JCP 124, 224707 (2006))

Nanotubes/nanowires slide to minimize the interface energy between surface and nanotubes/nanowires (*JPCB Letters 110, 10217 (2006)*).

"Lens Effect" **Normal Assembly** "Lens Effect" **Normal Assembly** "Lens Effect" 80nm V₂O₅ NWs - **2**μ**m** μ**m** μ**m** 0 0 4 4 μ**m** 20 μ**m** 10 0 0 **CNTs** μ**m** 10 μ**m** 18 μ**m** 10 0 μ**m** 0 0 6 0

JPCB Letters 110, 10217 (2006)

Fabrication of CNT/NW Circuits using only Conventional Microfabrication Facilities

바이오 센서 관련 논문 및 특허 동향

특허의 예

공개번호	출원일	대표도면					
KR 2006-017217	2004.08.20						
제목	휴대용 단	k ~ m					
식품에서 발생되는 화학성분 탑재시켜, 소비자가 식품의 신	식품에서 발생되는 화학성분을 검출하는 전자코 센서 시스템을 휴대용 단말기(휴대폰)에 탑재시켜, 소비자가 식품의 신선도를 체크할 수 있도록 한 휴대용 단말기						
공개번호	출원일	대표도면					
KR 2006-0036593	2004.10.26						
제목	구취측정 센	서가 구비된 휴대용 단말기 및 그 사용 방법					
휴대용 단말기 내부에 구취 구취측정 데이터와 진단기준 단말기							

특허 정보원 발간 "유비쿼터스 생화학 센서 시스템 특허 동향" 참조

Kernel Manostructure & Device Lab

등록번호	등록일	특허권자	대표도면		
US 4987767	1991.01.29	외국 회사			
제목	Ex	posive detection screening system			
폭발물/마약/음주류 응 물질 분석과 전체적인 마약 등의 금지품목을					
등록번호	등록일	특허권자	대표도면		
US 5711862	1998.01.27	외국 회사			
제목	Portable biochem				
효소 센서를 이용하0 센서의 수분을 유지시					
등록번호	등록일	특허권자	대표도면		
US 5446445	1995.08.29	잘 알려진 국내 핸드폰 회사			
제목		Mobile detection system			
가정과 사무실 등의 호 센터 등에 알리기 위험 용도 센서 및 이온화(i	하재와 가스 누출 및 한 이동 검출 시스 onization) 센서 등	! 침입자 등을 감지하여 외부 모니터, 경찰서, 소방 템(이동로봇)으로, 내부에 가스 누출 감지 센서와 을 구비함			

기술 개발 상황

<생화학 고속 검지 기술 특허 개수>

국 가	한국	미국	일본	유럽	계
모바일 관련 키워드가 들어갈 경우(A)	37	61	58	29	185
모바일 관련 키워드 제거할 경우(B)	1140	1797	5548	1033	9,518
비율 (A/B, %)	3.25%	3.39%	1.05%	2.81%	1.94%

- 생화학 검지 기술은 이미 성숙기에 들어섰으나, 이를 소형화하는 기술 개발이 미비하다
- 따라서, '소형' 생화학 센서 기술의 확보여부가 궁극적인 기술 경쟁력을 결정
- 특허정보원 발간 "유비쿼터스 생화학 센서 시스템 특허 동향" (2006년) 참조

			관린	년 人	장					(단역	위 : 억불
구분		2004	2005	2006	2007	2008	2009	2010	2011	2012	CAGR
환경정보센싱	세계	13.0	23	37	76.8	137	165	461			81.24%
의 거 기 비미 · · · ·	세계	3180	3340	-	-	-	-	4180			4.66%
환경서미스칩	국내	57	78	-	-	-	-	136			15.6%
	세계	1810	1940	-	-	-	-	2600			6.22%
환경자권이용입	국내	44	62	-	-	-	-	118			17.87%
	세계	1590	1660	-	-	-	-	2070			4.5%
환경철미입 1	국내	33	46	-	-	-	-	62			11.08%
ᄀᆘᅕᄱᆘᄭ	세계	25.6	27.4	_	_	_	_	-			-
가스센서	국내	0.58	_	_	_	-	-	-			-
환경/바이오센서	세계	23	25	27	29	32	35	39			9.4%
식품안전 바이오센서	세계	-	1.5	_	_	-	-	-	-	-	
항공우주 및 자동차 분야 나노센서	세계					3.4		36			225.4%
센서	세계					506		529			2.2%
	세계	-	72	_	191	-	-	768			60.55%
U-Sensor Network	국내	-	1.9	_	10	-	-	39.9			129.42%
Lab-on-a-Chip	세계				169					484	17.85
전자의료기기	세계					520		606			8.0%
RFID(i)	세계	20	30	41	53	67	83	100			30.77%
	국내	1.2	1.8	2.5	3.2	-	-	-			38.38%
정보통신 연구진흥원 발간 "유비쿼터스 생화학 센서 시스템 로드맵" (2006년) 참조											
Hybrid Nanostructure & Device Lab											

"Nanowire Integrated Circuit Foundry" Service (http://hnd.snu.ac.kr)

An example of standard design for nanotube/nanowire devices

- "Nanowire IC Foundry" service is now open in our lab.
- It provides nanotube/nanowire integrated circuits for researchers.
- Both standard and custom designed NT/NW ciruits are possible.

Summary

- 1. Dip-pen nanolithography for direct deposition organic molecules in nanometer scale resolution.
- 2. Surface-programmed assembly process for massive nanoassembly via molecular recognition.
- 3. Nanowire-based integrated devices: integrated circuits, sensors, etc.

"Nanowire-IC Foundry" is now open in our lab! Please let me know if you are interested in getting nanowire circuits.

Acknowledgements

Seoul National University

Jiwoon Im Minbaek Lee Narae Cho Seong Myung Kyung-Eun Byun Sun Namkung **Byung-Yang Lee** Sung-Yung Park Jun-Tae Ko Juwan Kang Byung-Ju Kim Tae-Kyung Kim Kwang Heo Prof. Young-June Park Prof. Seong-Hyun Hong Prof. Su-Hwan Kim

Nanolnk, Inc.

Samsung

Dr. Wanjun Park Dr. Insuk Yeo

Korea University Prof. Kyu-Tae Kim

Prof. Jeong-Suk Ha Prof. Yong-Doo Park

POSTECH

Prof. Gyu-Cheol Yi

Northwestern University

Prof. Chad A. Mirkin

Chung-Ang University

Prof. Maeng-Jae Seong

Univ. of Massachusetts

Prof. Young-Kyun Kwon

Se-Jong University

Prof. Nam-Kyung Lee

ETRI Prof. Jong-Hyuk Park

