Moltronics-Future of microelectronics?

Outline

- 1. Organic semiconductors
 - (1) Introduction-Definitions
 - (2) Carriers of Charge and Energy
 - (3) What happens in organic semiconductor?
 - (4) How does conduction occur?
- 2. Organic semiconductor Devices
 - (1) Measuring performance of organic devices
 - (2) Structure and Process
 - (3) Deposition and Morphology
 - (4) Contacts
 - (5) Patterning (all organic circuits)
 - (6) Additional technology

- 3. Electrical conduction in small molecules
 - (1) Cutting edge technologies
 - A. SPM
 - B. Transport
 - (2) Electrical conduction in small molecules

Semiconductors

- ·Small but finite band gap
- ·Moderate number of carriers
- ·High carrier mobility
- -Diamond
- -Graphite
- -SiO2
- -PbSe
- -Polycarbonate
- -Silicon
- -Germanium
- -GaAs
- -Polythiophene
- -Pentacene

Organic Solid

- · A material with carbon and hydrogen
- ·Typically characterized by spx hybridization
- ·Can be armorphous, crystalline or in between..

Polymers

Long, chain like molecules in which a basic unit is repeated a large, undetermined number of times

Olygomers

A low molecular weight polymer typically with two to five monomer units.

1. Organic semiconductors-- Definitions

Molecules

Derived from "molecula"-meaning small mass (a smallest unit of chemical compound that still exhibits all its properties)

The size of the system

water, amonia, chlorophyll	DNA
benzene crown ethers	log (SIZE)

H. Haken and H. C. Wolf

Seeing the shape of molecules

TEM

What happens in organic semiconductors?

Traditional semiconductors

- Regulary spaced tightly bound lattice
 (Bloch structure)
- ·Carriers are delocalized over a large area
- ·Both electrons and hole have good mobility
- ·Si, GaAs, Ge

Organic semiconductors

- ·Charges are able to hop from one chain to another and into/out of traps
- •Carriers move through the solid in response to an applied e-field (Field effect modulation of current and conductivity)
- ·Holes are generally more mobile than electrons(electron traps)

1. Organic semiconductors-- Definitions

Conducting Polymers

structures	polymer	doping	conductivity (Scm) ⁻¹
	polyphenylene	Chemical (AsF ₅ , Li, K)	500-1.5×10 ⁵
~~~~~	polyacetylene	Electrochemic al, chemical	500
	polypyrrole	electrochemic al	600
Shertshertsh	polythiophene	electrochemic al	100
	polyaniline	electrochemic al	10



# Carbon is special I

- ·Carbon has several useful forms
- ·Carbon is not afraid to hybridize
- ·Carbon is a group 4 element
- ·Carbon's electronegativity is in the middle of the range-it prefers to share rather than steal or give up electrons
- ·Carbons bond readily with other carbons
- ·Carbon is small



# 1. Organic semiconductors-- Definitions

# Carbon is special I

Fluorine	4.2	n=1 H He
Oxygen	3.6	N=2 C Li Be F
, 5		N=3 Mn Fe
Nitrogen	3.1	Cr P S Co U Si Na Ma CI Ni
Chlorine	2.9	Ti Al Ar Cu Sc Zn
		n=4 Gd Tb
Bromine	2.7	Sm Mo As Se Rh Ho
Sulfur 🔟	2.6	Pm Nb Ge K Ca Br Pd Er Nd Zr Ga Kr Ag Tm
		Pr Y Cd Yb
Iodine	2.4	Ce Lu
Carbon	2.5	n=5 Cm Bk Re Os Cf
		Pu H Sb Te Ir Es Np Ta Sn Rb Sr I Pt Fm
Hydrogen	2.3	U Hf In Xe Au Md
Phosphorus	3 2.3	Pa La Hq No Th Lr
•		n=6 Ns Ht
Silicon	1.9	Sq Bi Po 110  Ha Pb Cs Ba At 111
Iron	1.7	Rf TI Rn 112
	1.7	Ac 113
Sodium	0.9	//=/ 115 Fr Ra 118
		n = 8
		120 121



# Carbon is special II

Hybridized forms of carbon

Carbon has 6 electrons: 15² 25²2P²=[H]5P³P¹z









나 노 물 성 연 구 팀 Name Materials Research Team



# Hybridized forms of carbon

# Carbon has 6 electrons: 15² 25²2P²=[H]SP³P¹z

hybridizati on	# of hybrid	shape	Orbital interactions	bonding
sp3	4	tetrahedral	4 σ	4 single
sp2	3	Trigonal planar	3 σ 1 π	2 single 1 double
sp	2	linear	2σ 2π	1 single 1 triple or 2 double



# Hybridization-delocalization-resonance





# How does charge live on organic molecules?

- ·Polarons
- Bipolarons
- ·Exitons
- ·Solitions

Organic solids are covalent solids without electron overlap there are no significant hole and electron carriers in the traditional sense. Phonons appear to localize the charges.



### Polyacetylene



Metallic plastic?

New material with the conductivity of a copper and the mechanical properties of plastic

But nobody holds the C atoms fixed....

The position of C atoms is determined by the minimum energy of the system

Etot=E electron+Eel-ion+Eions

1 D metals are always unstable with respect to a lattice distortion of wavelength  $2k_F$  Rudolf Pierls 1950's



# Polyacetylene-electronic structure



Sp2 hybridized carbon-1  $\pi$  delocalized electron per  ${\it C}$  atom.

Suppose C atoms are disposed periodically,



### Conduction in organic semiconductors-Soliton







# Measuring performance of organic semiconductors

The most frequently cited values are mobility, on/off ratio, threshold voltage, and subthreshold slope



### Structure and process



# Deposition and morphology

Morphology and charge transfer relationship in organic semiconductors





# Organic crystals



나 노 물 성 연 구 팀 Materials Research Team

# Organic thin films with different solvent





#### 기 포 플 $\sigma$ 년 구 팀 Matterials Research Team

#### Where do we use them?

Organic Electronic Devices: Displays, Memory Cards, Sensors





# In the future?





# Cutting Edge technologies in measuring small molecules

Can we achieve following criteria with Moletronics?

- · Density
- Power dissipation
- Reliability
- Integration
- •Speed
- ·cost

