Electrical Sensing of Biomolecules based Nanomaterials and Carbon Nanotubes

Department of Chemistry Pohang University of Science and Technology Hee Cheul Choi

- Part /

Electrical sensing of biomolecules based on Nanomaterials

- Part //

Carbon Nanotubes and applications

Colorimetric vs. Electrical sensing

Fast	
Easy detection (even with n Chemistry oriented (Equipn	aked eyes) nent free~)
Color source required (fluorescent tagging molecule) Tagging for millions of unknown or known target molecules Works well for pairs with high binding constant	
Electrical detection	
Requires electrical equipme Many assumptions and unre Sensitive to environment (no	nts solved phenomena to rationalize the signals bise, electric shock, etc)
Tagging free system May work well for the pairs w	with low binding constant
Fast Applicable to "Ubiquitous" concept	
Electric	al sensing
Definition:	
Definition: Detection chemic	al & biological
Definition: Detection chemic reactions via elec	al & biological trical signal readout
Definition: Detection chemica reactions via elec	al & biological trical signal readout
Definition: Detection chemical reactions via elector lectrochemical	al & biological trical signal readout

Electrochemical sensing

Signal transducer (Active redox markers)

Tris(1,10-phenanthroline)cobalt(III)

Ferrocenyl naphthalene diimide

Cyclic voltammogram and pulse voltammogram

DNA sensor using Au nanoparticles (case 1)

DNA sensor using Au nanoparticles (case 2)

DNA sensor using Glassy carbon (GC) vs. GC/CNT

Cyclic voltammograms

Wang. J, et al. Electroanalysis 2004, 16, 140.

DNA sensor using aligned CNTs (case 1)

Cyclic voltammograms Aligned nanotube-DNA electrochemical sensor 12.0 Acetic Acid 0.0 Plasma 8 40 00 100 Aligned Carbon Nanotube -4.0 -8.0 Gold 0.4 0.0 0.2 0.8 0.8 E (V) a : ssDNA + FCA-complementary DNA b : w/ FCA-noncomplementary DNA c : w/ target DNA (+b) HO 12.0 8.0 (10^{*}A) H₂N4 4.0 EDC 0.0 Incubation Hybridization -8.1 0.2 0.4 FCA : ferrocenecarboxaldehyde reversible → E (Y) a : ssDNA + FCA-complementary DNA In 0.1 M H₂SO₄ sol'n **b** : denature (thermal) Scan rate 0.1 V/s He. P, et al. Chem.Comm. 2004, 348 c : w/ FCA-complementary DNA FCA-DNA 0.05 µg/mL

DNA Sensor using aligned CNTs (case 2)

After hybridizing the 20 bp polyG targets

Protein Sensor using aligned SWNTs (case 1)

a, b : SWNTs

- c: shortened SWNT aligned to the electrode surface by SAM(cysteamine) on gold electrode
- d: microperoxidase MP-11 (a small redox protein obtained by proteolytic digestion of horse heart cytochrome c)

Glucose Sensor using aligned SWNTs (case 2)

Glucose Sensor using SWNT (case 3)

Davis.J.J, et al. *Chem. Eur. J.* **2003**, 9, 3732 Katz. E, et al. *ChemPhysChem.* **2004**, *5*, 1084

Glucose Sensor using Pt Nanoparticles and SWNTs (case 4)

Nanomaterials

Biomolecules

Why transistor and Why nanotube or nanowire?

Transistor: provides direct electrical signals

Nanotube or nanowire:

Impressive not just by its size!! But by its high performance (charge carrier mobility)

Electrical sensor with high sensitivity