

결정화 공정의 상평형의 원리와 이해

2007년 8월 20일 결정화 분리기술 사업단 고려대학교 화공생명공학과 강정원

3. 용해도 계산과 상도

Simple Solubility Correlation for Solutions

◆ Influence of temperature on solubility

$$c = A + Bt + Ct^2 + \dots$$

$$\log x = A + BT$$

$$\log x = A + BT + CT^{2}$$

$$\log x = A + BT^{-1}$$

$$\log x = A + BT^{-1} + CT^{-2}$$

$$\log x = A + BT^{-1} + C\log T$$

Solubility expression for inorganic salts (Electrolytes)

Ionic equilibrium relation (Or Reaction Equilibrium)

 $a \mathbf{A} + b \mathbf{B} \rightarrow c \mathbf{C} + d \mathbf{D}$

Example) NaCl (s) \rightarrow Na⁺ + Cl⁻

Condition for Equilibrium

$$a\mu_A + b\mu_B = c\mu_C + d\mu_D$$

 $\mu_i(T) = \mu_i^0(T) + RT \ln \gamma_i x_i$ Can be expressed in composition $\mu_i(T) = \mu_{im}^0(T) + RT \ln \gamma_i m_i$ Can be expressed in composition
Or molarity

Solubility expression for inorganic salts (Electrolytes)

$$a\mu_{A} + b\mu_{B} = c\mu_{C} + d\mu_{D} \qquad \mu_{i}(T) = \mu_{im}^{0}(T) + RT \ln \gamma_{i}m_{i}$$

$$a\mu_{A}^{0} + b\mu_{B}^{0} - c\mu_{C}^{0} - d\mu_{D}^{0} = RT \ln \frac{(\gamma_{C}m_{C})^{c}(\gamma_{D}m_{D})^{d}}{(\gamma_{A}m_{A})^{a}(\gamma_{B}m_{B})^{b}}$$

$$K_{T} = \exp(\frac{a\Delta G_{fA}^{0} + b\Delta G_{fB}^{0} - c\Delta G_{fC}^{0} - d\Delta G_{fD}^{0}}{RT})$$

Standard free energy Change of reaction

$$K_{T} = \frac{(\gamma_{C}m_{C})^{c}(\gamma_{D}m_{D})^{d}}{(\gamma_{A}m_{A})^{a}(\gamma_{B}m_{B})^{b}}$$

Solubility expression for inorganic salts (Electrolytes)

♦ For the case of salt in solution, $M(s) \rightarrow a \ A \ (aq) + b \ B \ (aq)$

Basis : formation of hypothetical Ideal solution of 1 molarity at standard condition

Basis : formation of 1 mol of solid at standard condition

Solubility expression for inorganic salts (Electrolytes)

Solubility Product $M(s) \rightarrow a A (aq) + b B (aq)$ $K_{sn} = (\gamma_C m_C)^c (\gamma_D m_D)^a$ $K_{sp} = \exp(\frac{a\Delta G_{fA}^{0} + b\Delta G_{fB}^{0} - \Delta G_{fM}^{0}}{RT})$ Example) $Al(OH)_3 \rightarrow Al^{3+} + 3OH^{-1}$ $K_{sp} = 1.1 \text{E} - 15$ $K_{sp} = (m_{\Lambda I^{3+}})(m_{\Omega H^{-}})^3 = 1.1 \times 10^{-15}$ $3m_{AI^{3+}} = m_{OH^{-}}$ $m_{Al(OH)_3} = m_{Al^{3+}} = 8 \times 10^{-5} \, g \,/\, mol$

Advanced Topics in Electrolyte Solutions

• Effect of K_{sp}

- Temperature
- Pressure
- ♦ Activity Coefficients
 - From thermodynamic models
 - Debye-Huckel Model
 - Guggenheim Model
 - Pitzer Model
 - Bromley Model
 - Meissner Model

Difficulties in Electrolyte Solution

• Existing activity model only applies to limited range

- Applicable only for dilute solution
- No model can effectively explain the behavior of dilute and highly concentrated solution
- For practical purposes, simple empirical correlations are normally used

$$\log x = A + BT$$

$$\log x = A + BT + CT^{2}$$

$$\log x = A + BT^{-1}$$

$$\log x = A + BT^{-1} + CT^{-2}$$

$$\log x = A + BT^{-1} + C\log T$$

Data Source

- Solubility of Electrolytes and Nonelectrolytes
 - J. M. Mullin, "Crystallization", Butterworth-Heinemann (1993)
- Method for Electrolyte Solutions
 - J. F. Zemaitis, Jr., D. M. Clark, M. Rafal and N. C.
 Scrivner, "Handbook of Aqueous Electrolyte Solution", AIChE (1986)

Ideal Solubility

- Solution (liquid phase) exhibit "ideal behavior"

• Fugacity of mixture is proportional to mole fraction (solubility)

 $f_{2,liquid}(T, P, x) = x_2 f_{2,liquid}^{pure}(T, P)$

♦ Nonideal solubility

- Solution exhibit non-ideal behavior

$$f_{2,liquid}(T,P,x) = \gamma_2 x_2 f_{2,liquid}^{pure}(T,P)$$

Ideal Solubility Calculation Method

- Solution (liquid phase) exhibit "ideal behavior"
- Solid (crystal) is in a pure state

$$f_{2, pure solid}(T, P) = x_2 f_{2, liquid}^{pure}(T, P)$$

$$x_{2} = \frac{f_{2, pure \ solid} \left(T, P\right)}{f_{2, pure \ subcooled \ liquid} \left(T, P\right)}$$

Solid \rightarrow Liquid transition properties are important Solid \rightarrow Liquid Transition can occur in any temperature

Solid-Liquid transition

- Solid-Liquid transition
 - To calculate fugacity ratio of solid and liquid phase, two reference states are normally used
 - Triple point : T_t
 - Normal Melting Point : T_m
 - Because heat of fusion (H_f) data are reported at those temperatures
- Thermodynamic Cycles for calculating fugacity ratio (or chemical potential changes)

Ideal Solubility equation

 $f_{2,solid} = x_2 f_{2,liauid}$ $x_2 = \frac{f_{2,solid}}{f_{2,liauid}} \qquad RT \ln \frac{f_2}{f_1} = \Delta G_{1 \to 2} = \Delta H_{1 \to 2} - T\Delta S_{1 \to 2}$ $RT\ln\frac{1}{x_2} = \frac{\Delta H_f}{RT_f} \left(\frac{T_f}{T} - 1\right) - \frac{\Delta C_P}{R} \left(\frac{T_f}{T} - 1\right) + \frac{\Delta C_P}{R}\ln\frac{T_f}{T}$

• You can use T_t or T_f depending on H_f data available

$$f_{2,solid} = x_2 \gamma_2 f_{2,liquid}$$

$$\gamma_2 x_2 = \frac{f_{2,solid}}{f_{2,liquid}}$$

$$RT \ln \frac{1}{\gamma_2 x_2} = \frac{\Delta H_f}{RT_f} \left(\frac{T_f}{T} - 1\right) - \frac{\Delta C_P}{R} \left(\frac{T_f}{T} - 1\right) + \frac{\Delta C_P}{R} \ln \frac{T_f}{T}$$

◆ How to calculate activity coefficient ?

- Solution models in molecular thermodynamics
 - Magules
 - Wilson
 - NRTL
 - UNIQUAC

ERSTE YOURT

Table 2.9 Empirical and Semitheoretical Equations for Correlating Liquid-Phase Activity Coefficients of Binary Pairs

Name	Equation for Species 1	Equation for Species 2
(1) Margules	$\log \gamma_1 = A x_2^2$	$\log \gamma_2 = A x_1^2$
(2) Margules (two-constant)	$\log \gamma_1 = x_2^2 [\overline{A}_{12} + 2x_1 (\overline{A}_{21} - \overline{A}_{12})]$	$\log \gamma_2 = x_1^2 [\overline{A}_{21} + 2x_2 (\overline{A}_{12} - \overline{A}_{21})]$
(3) van Laar (two-constant)	$\ln \gamma_1 = \frac{A_{12}}{[1 + (x_1 A_{12})/(x_2 A_{21})]^2}$	$\ln \gamma_2 = \frac{A_{21}}{[1 + (x_2 A_{21})/(x_1 A_{12})]^2}$
(4) Wilson (two-constant)	$\ln \gamma_{1} = -\ln(x_{1} + \Lambda_{12}x_{2}) + x_{2} \left(\frac{\Lambda_{12}}{x_{1} + \Lambda_{12}x_{2}} - \frac{\Lambda_{21}}{x_{2} + \Lambda_{21}x_{1}} \right)$	$\ln \gamma_2 = -\ln(x_2 + \Lambda_{21}x_1) - x_1 \left(\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{x_2 + \Lambda_{21}x_1}\right)$
(5) NRTL (three-constant)	$\ln \gamma_1 = \frac{x_2^2 \tau_{21} G_{21}^2}{(x_1 + x_2 G_{21})^2} + \frac{x_1^2 \tau_{12} G_{12}}{(x_2 + x_1 G_{12})^2}$ $G_{ij} = \exp(-\alpha_{ij} \tau_{ij})$	$\ln \gamma_2 = \frac{x_1^2 \tau_{12} G_{12}^2}{(x_2 + x_1 G_{12})^2} + \frac{x_2^2 \tau_{21} G_{21}}{(x_1 + x_2 G_{21})^2}$ $G_{ij} = \exp(-\alpha_{ij} \tau_{ij})$
		10
(6) UNIQUAC (two-constant)	$\ln \gamma_1 = \ln \frac{\Psi_1}{x_1} + \frac{\overline{Z}}{2} q_1 \ln \frac{\theta_1}{\Psi_1}$	$\ln \gamma_2 = \ln \frac{\Psi_2}{x_2} + \frac{\overline{Z}}{2} q_2 \ln \frac{\theta_2}{\Psi_2}$
	+ $\Psi_2\left(l_1 - \frac{r_1}{r_2}l_2\right) - q_1\ln(\theta_1 + \theta_2 T_{21})$	+ $\Psi_1\left(l_2 - \frac{r_2}{r_1}l_1\right) - q_2\ln(\theta_2 + \theta_1T_{12})$
-involution standou los	$+ \theta_2 q_1 \left(\frac{T_{21}}{\theta_1 + \theta_2 T_{21}} - \frac{T_{12}}{\theta_2 + \theta_1 T_{12}} \right)$	$+ \theta_1 q_2 \left(\frac{T_{12}}{\theta_2 + \theta_1 T_{12}} - \frac{T_{21}}{\theta_1 + \theta_2 T_{21}} \right)$

SLE for Solid Solution

♦ Two Types of Phase Behavior

(b) Eutectic-forming system of ortho- and parachloronitrobenzene system suitable for melt crystallization

(c) Solid-solution system suitable for fractional melt crystallization

Molecular structures are different

Molecular structures are similar

SLE for Solid Solution

• Basic Thermodynamic Framework

$$f_i^{\ l} = f_i^{\ s}$$

$$x_i \gamma_i^{\ l} f_i^{\ l} = z_i \gamma_i^{\ s} f_i^{\ s}$$

$$x_i \gamma_i^{\ l} = z_i \gamma_i^{\ s} \psi_i \qquad \longrightarrow \psi_i \equiv \frac{f_i^{\ s}}{f_i^{\ l}}$$

Similar technique in 2.2 can be used

Required information

- Melting points
- Heat of fusion/melting
- Heat capacity of solid and liquid

SLE for Solid Solution – Rigorous Derivation

$$\psi_i = \exp \int_{T_{m_i}}^T \frac{H_i^l - H_i^s}{RT^2} dT$$
$$\int_{T_{m_i}}^T \frac{H_i^l - H_i^s}{RT^2} dT = \frac{\Delta H_i^{sl}}{RT_{m_i}} \left(\frac{T - T_{m_i}}{T}\right)$$
$$+ \frac{\Delta C_{P_i}^{sl}}{R} \left[\ln \frac{T}{T_{m_i}} - \left(\frac{T - T_{m_i}}{T}\right)\right] + I$$

$$I \equiv \int_{T_{m_i}}^T \frac{1}{RT^2} \int_{T_{m_i}}^T \int_{T_{m_i}}^T \left[\frac{\partial (C_{P_i}^l - C_{P_i}^s)}{\partial T} \right]_P dT \, dT \, dT$$

SLE for Solid Solution

◆ If *I* and Heat capacity changes are negligible,

$$\psi_i \equiv \frac{f_i^{s}}{f_i^{l}} = \exp \frac{\Delta H_i^{sl}}{RT_{m,i}} \left(\frac{T - T_{mi}}{T}\right)$$

 $x_i \gamma_i^l = z_i \gamma_i^s \psi_i$

SLE for Solid Solution

Case I : Solid Solution

 $x_{i}\gamma_{i}^{l} = z_{i}\gamma_{i}^{s}\psi_{i}$ $x_{1} = z_{1}\psi_{1}$ $x_{2} = z_{2}\psi_{2}$ $x_{1} + x_{2} = 1$ $z_{1} + z_{2} = 1$

(c) Solid-solution system suitable for fractional melt crystallization

$$\psi_i \equiv \frac{f_i^{s}}{f_i^{l}} = \exp \frac{\Delta H_i^{sl}}{RT_{m,i}} \left(\frac{T - T_{mi}}{T}\right)$$

SLE for Solid Solution

• Case II : Immiscible Solid (Eutectic Forming) $x_i \gamma_i^l = z_i \gamma_i^s \psi_i$

 $x_{1} = \psi_{1}$ $x_{2} = \psi_{2}$ \downarrow $x_{1} = \psi_{1} = \exp \frac{\Delta H_{1}^{sl}}{RT_{m1}} \left(\frac{T - T_{m,1}}{T}\right)$

(b) Eutectic-forming system of ortho- and parachloronitrobenzene system suitable for melt crystallization

$$x_2 = \psi_2 = \exp \frac{\Delta H_2^{sl}}{RT_{m,2}} \left(\frac{T - T_{m,2}}{T} \right)$$

Types of Phase Diagram... How to interpret ?

◆ Two component system

the relative effect of temperature) cr201 KCI NaCIO: vino. Solubility (to show (NH4)2SO4 NaCl Na203:10H20 Na2CO3 · H2O KC10 0 10 20 30 40 50 60 70 80 90 100 Temperature, °C (a) Aqueous systems suitable for solution crystallization

Simple Behavior

Complex Behavior

Types of Phase Diagram... How to interpret ?

◆ Lever Rule

- Always applies to any kind of phase diagram
- Two simple rules
 - Three points those satisfies material balance equation must lie on a same line
 - The amount of splits are proportional to the length of line in opposite direction

Types of Phase Diagram... How to interpret ?

• Example of Lever Rule : MgSO4 System

◆ Several structures can be produced for water-salt systems.

- Example) Solid magnesium sulfate

MgSO4 MgSO4·H2O MgSO4·6H2O MgSO4·7H2O MgSO4·12H2O anhydrous magnesium sulfate magnesium sulfate monohydrate magnesium sulfate hexahydrate magnesium sulfate heptahydrate magnesium sulfate dodecahydrate

Composition of Solid MgSO4·7H2O

Lever Rule

Solution \rightarrow (Cool down) \rightarrow Solid + Solution

- Overall Material Balance Eqn.

F = S + C F : Feed S : SolutionC : Crystal

- MgSO4 Balance

 $Fx_F = Sx_s + Cx_c$ $(S+C)x_F = Sx_s + Cx_c$ $\frac{C}{S} = \frac{x_F - x_S}{x_C - x_F}$ $\frac{C(\text{kg crystal})}{S(\text{kg solution})} = \frac{\overline{CD}}{\overline{DE}}$

Lever Rule (지렛대원리)

Amount of crystal (C)

Three Component Systems

◆ Construction of Ternary Diagram

construction of the right angled isoscelas triangle is shown in Firm 410

Three Component Systems

◆ How to read composition (M point)

Three Component Systems

◆ Lever Rule

Figure 4.19. Construction of equilateral triangular diagrams

 $\mathbf{X} + \mathbf{Y} = \mathbf{Z}$

Or

Z = X + Y

mass of mixture X	distance YZ
mass of mixture Y	distance XZ

construction of the right angled isoscelar triangle is shown in Figure 4 10

Three Component System - (1) Solid Solutions

System : o-, m-, p- nitrophenol

– A, B, C : Eutectic Points

Three Component System – (2) Two Salts and Water

♦ Different Types of Phase Behavior

- No chemical reaction
- Formation of a solvate (hydrate)
- Formation of double salt
- Formation of hydrate double salt

Two salt and water – No chemical reaction

Two salt and water – Solvate formation

- When one of solutes can form a compound (solvate, hydrate)
- ♦ NaCl + NaSO4 + Water System
 - Legend : S(solution), H(hydrate, Na2SO4.10H2O), SO4 (Na2SO4), Cl (NaCl)

At 17.5 degree C

At 25 degree C

Two salt and water – Double Compound Formation

• When two dissolved solutes form double compound

– C : double salt

Stable in Water

Decomposed by Water

Hydrated Double Salt

♦ H : Hydrate

◆ C : Hydrated Double Salt

Two Salt and Water – Solid Solution Formation

◆ Water + Two electrolyte with common ion

