

냉각 결정화 기술의 응용전략-1

고려대 화공생명공학과 양대륙

- 결정화 서론 ▶ 화학산업과 결정화 ▶ 결정화 개요 ▶ 결정화의 장점 냉각결정화 기본현상 ¾ 핵생성/ 성장 ¾ 준안정영역 ▶ 핵생성 및 성장에 대한 중요변수 ▶ 준안정영역 모델 결정화 Modeling ¾ PBE model \triangleright Crystallization applet
- 최적냉각곡선
	- ¾ Natural/Linear/Optimal cooling
	- \triangleright Optimization
- Process Analytical Technology (PAT)의 응용

서론

화학제품의 분류 (Pollak, 1993)

제품군에 따른 특징 (예)

Table 1. Comparison of Chemical Classes

"Also sold under the trade names Hydroton, Regroton, Igrolina, Igroton, and Renon. ^bB is batch; C, continuous; D, dedicated; M, multipurpose; and F, formulation.

화학산업의 특징

Table 1. The chemical sector-main characteristics of the industries

*Typical examples-exceptions may apply.

^b Relative importance: X low; XX, average; XXX, high importance.

o World most selling drugs

¾ Source: IMS Health, a health care information company. Twelve months ending December 2005

세계의 제약회사 (2004)

페니실린 정제공정의 예

Fig. 3.7. Penicillin purification process of Gist-Brocades. (From Hersbach et al. 1984.) 10

결정화란 (Crystallization)

¾ 분리기술의 일종으로 액체 혹은 기체의 균일상으로부터 조작을 통하 여 고체입자, 즉 결정(Crystal)을 얻는 과정

결정 (Crystal)

▶ 일정한 각도로 교차하는 평면이 대칭적으로 정렬된 특징적인 내부구 조를 가진 고체물질

¾ 이런 구조적 특징을 가지려면 분자가 한층 한층 쌓여가는 과정에 의 해 생성되므로 결정의 성장이 상대적으로 느리게 진행된다.

¾ 이때 결정의 모양은 결정을 구성하는 분자의 기본적인 구조에 의해 결정된다.

(출처: http://www.its.caltech.edu/~atomic/snowcrystals)

결정화가 일어나는 이유

¾ 녹을 수 있는 정도(용해도, Solubility)보다 더 많은 용질이 용매에 녹아있을 때 (과포화, Supersaturation), 용질의 분자가 서로 결 합하여 결정을 형성한다.

과포화의 원인

- ¾ Temperature: 냉각, 용융
- ¾ Concentration: 증발
- ¾ Anti-solvent: Drowning-out
- ¾ Additives: 염석
- ¾ Pressure: 진공 (증발+냉각)
- ¾ Reaction: 반응
- \triangleright Etc.

결정화의 장점

¾ 저 에너지 사용

전통적인 분리공정에 비해 30~50% 정도의 에너지만 사용

$>$ 단일공정

공정의 구성이 간단하고 장비가 저렴

증류와 결정화의 비교

냉각결정화의 기본 이론

냉각결정화 ¾ 용액을 온도를 변화시켜 과포화를 유도하여 결정을 생산 ¾ 온도에 따른 용해도의 변화가 큰 물질에 대해 적용 ¾ 초기 포화온도를 높일 수 없는 경우는 진공도 사용 고순도이면서 균일한 분포의 생성물을 얻는데 유리

정밀화학 및 반도체 공정에서 많이 사용

품질요소: mean particle size, PSD, morphology, purity

States of Solution

- 안정영역 (Stable region)
	- ¾No crystallization or precipitation
	- ¾ Nuclei < critical size
	- ¾Nuclei forms and melts in equilibrium
- 불안정영역 (Labile region)
	- ¾ Nuclei > critical size
	- \triangleright Nuclei do not melt back to solution
	- \triangleright Simultaneous
		- Nuclei formation
		- Crystal growth
- 준안정영역 (Metastable region)
	- ¾No nuclei (larger than critical size) formation
	- **▶ Only Crystal growth**
	- \triangleright Very important region for industrial crystallization
		- Controls the particle size distribution and mean particle size

 0.00

iolecules

Almost no by-product

Embryos

*Process System Engineering Lab., Dept. of Chemical and Biologica Process Engineering Lab., Dept. of Chemical and Biological Engineering, Korea University l Engineering, Korea University*²²

Irrversible

Crystals

Nuclei

결정화 조업조건의 중요성

- ¾ Inappropriate cooling strategy causes
	- Uneven particle size distribution
	- **Smaller mean particle size**
- \triangleright Low purity and low product quality
- ¾Requires time and energy for washing final product

Nucleation and Crystal Growth

핵생성 (Nucleation)

- ¾ 일차핵생성 (Primary nucleation)
	- 균일 핵생성 (Homogeneous nucleation)
		- \checkmark Solute molecule combines to produce embryos
	- 불균일 핵생성 (Heterogeneous nucleation)
		- \checkmark Due to foreign nuclei which has lower surface energy
- ¾ 이차핵생성 (Secondary nucleation)
	- Due to solute particles or Seeds
	- **Apparent secondary nucleation**
		- \checkmark Small fragments washed from the surface of the seeds
	- **True secondary nucleation**
		- \checkmark Current level of supersaturation is higher than the critical level for the solute particles present in solution
	- **EXCONTACT SECONDARY NUCLEATION**
		- \checkmark Growing particle contacts with walls, stirrer, pump impeller, or other particle and generates residual solute particles

결정의 성장은 주로 degree of supersaturation에 의해 결정

o Supersaturation

- \triangleright Thermodynamically, solute in excess of solubility
	- Supersaturation = $\Delta \mu / RT$ where μ is chemical potential

\triangleright For practical use

Δ*c***=***c*−*c****** or *S***=***c***/***c****** where *c****** is saturation concentration

Supersaturation Δc is sometimes called **"**concentration driving force. **"**

o Crystallization Kinetics

¾ Nucleation rate: rate of formation of new crystal

$$
\frac{dN}{dt} = B = k_N (\Delta c)^b \quad \text{(nuclei/sec} \cdot \text{m}^3\text{)}
$$

- Where b= order of nucleation
- B=nucleation rate (rate of increase of crystal number)
- ¾ Crystal growth: rate of increase of crystal dimension

$$
\frac{dL}{dt} = G = k_G (\Delta c)^g \quad \text{(m/sec)}
$$

Where b= order of nucleation

B=nucleation rate (rate of increase of crystal number) \mathbf{r}

¾ Crystal agglomeration and breakage are also function of supersaturation

Metastable Zone Width

- 준안정영역에 관한 정보는 결정화 조업에 매우 중요 ¾ 균일한 PSD에 큰 영향
- Metastable zone width (MZW)
	- Temperature \triangleright Maximum Allowable Undercooling (MAUC): $\varDelta T_{\text{max}}(C)$
	- \triangleright Maximum allowable supersaturation (MASS): $\varDelta C_{\text{max}}(T)$
- 균일한 PSD를 위한 조업 조건 ¾ Driving force: Δ*C=C*− *C* *** (** *^T***)** 또는 Δ*T=T*− *T**** (** *C* **)** ¾ 핵생성 조건: Δ*C*>Δ *C***max(** *^T***)** 또는 Δ*T*>Δ *T***max(** *C* **)** ¾ 결정성장은 Δ*C* 나 ^Δ*T* (Driving force)가 클수록 빠름

Labile

준안정영역에 영향을 미치는 인자

▶ 냉각속도

일반적으로 냉각속도가 커질수록 MZW가 커짐

 \triangleright Agitation

교반속도가 너무 느린 영역에서는 변화 없음

일반적으로 교반속도가 커질수록 MZW가 작아짐

 \triangleright Additives

종류에 따라 매우 달라짐

▶ Solution thermal history

영향이 있음은 관찰되고 있으나 어떤 영향을 가지는지는 미지수

T

ďT

 dt

 $\Delta T_{\rm max}$

Weakness of previous approaches $\overline{\mathbf{m}}$

- ¾ MZW is considered as a Static property
	- $\Delta T_{max} = k(u)^p$
- ¾Cannot explain Induction time
- ¾ Other unrealistic behavior
	- **Cooling rate changes from nonzero to zero**
	- Sudden start of cooling from equilibrium

time

 (a)

*Process System Engineering Lab., Dept. of Chemical and Biologica Process Engineering Lab., Dept. of Chemical and Biological Engineering, Korea University l Engineering, Korea University*³⁰

time

 (b)

• New approach

- ¾MZW is not a static property.
- \blacktriangleright As cooling rate changes, the metastable limit is separated and converged to saturation curve asymptotically.
- ¾ Need to introduce dynamic concept.
	- **Simple approach: 1st or 2nd order dynam** $\sum_{i=1}^{\infty}$
- ¾Induction time can be explained.

Model for batch cooling crystallization

- The dynamic model of the metastable limit
	- \triangleright To explain the dynamic behaviour of metastable limit, following 1st order dynamic model can be proposed.

$$
\tau \frac{\Delta T_{\text{max}}(t)}{dt} + \Delta T_{\text{max}}(t) = k u(t)^p
$$

Where, $\boldsymbol{\mathit{u}}$ is the cooling rate of the solution, and Three parameters, $\pmb k$, $\pmb p$, and τ , are depend on saturation concentration.

 \triangleright This model has 1st order dynamics of supersaturation with nonlinear output to rate of driving force inducing supersaturation.

Experiments for defining dynamic model of metastable limit

Reactor of nucleation experiment

- Experimental procedure
	- ① Making up solution.
		- (NH 4) ²SO 4**–** H ²O solution
	- ② Keeping temperature as initial temperature for 1hr.
		- RPM of magnetic bar : 1100rpm (Max.)
	- ③ Keeping temperature as initial temperature for 30min.
		- RPM of magnetic bar : 400rpm
	- ④ Starting cooling experiment
	- ⑤ Observing nucleation
		- RPM of Strobo scope : 1400 rpm \blacksquare

Experiment 1-1

Finding out parameters for the dynamic model

\triangleright Experimental conditions

- **Solution concentration (Saturation temperature)** 9 0.8425(50℃), 0.8263(45℃), 0.8100(40℃)
- Initial temperature : 10 \degree higher than saturation temperature

Cooling rates : 30℃/h, 25℃/h, 20℃/h, 15℃/h, 10℃/h

- \triangleright Expected results
	- Parameters for dynamic model of metastable limit

 ∇ k, p, τ

Parameters for the metastable limit model

 $k = 4.545 e^{0.3195T_s} \times 10^{-9}$ $p = 6.894 - 0.1015T_s$ $\tau = 0.3682 + 0.03572T_s$ $=4.545e^{0.51951_s}\times10^{-1}$

Estimated parameter from experiment $1-1$.

Experiment 1-2

Verification of Proposition

\triangleright Experimental condition

- Solution concentration : 0.8425 [solute kg/ solvent kg] (T_s=50℃)
- ■Initial temperature : 60℃ (10℃ higher than saturation temperature)
- Cooling rate : 30℃/h
- Keeping solution temperature at : 43℃, 45℃, 47℃
- \triangleright Expected results
	- **Induction time is well predicted by the dynamic model**

Prediction of Nucleation time

Results of experiment 1-2.

linear cooling of 30℃/h from 60℃ to (a) 43℃, (b) 45℃, (c) 47℃ and then hold

Experiment 1-3

e Predicting the effect of thermal history

- ¾ Experimental condition
	- **Solution concentration: 0.8425 [solute kg/ solvent kg]** (T_s=50℃)
	- Initial temperature : 55℃ (5℃ higher than saturation temperature)
	- Cooling rate : 30℃/h
	- **Different thermal history**
		- √ Linear cooling from 60℃ to 55℃. Cooling rate is 30 ℃/h
		- 9 Keeping temperature as 55℃
		- 9 Linear cooling from 60℃ to 55℃. Cooling rate is 5 ℃/h
		- 9 Linear cooling from 60℃ to 55℃. Cooling rate is $2.5 °C/h$
- \triangleright Expected results
	- **Thermo history is well predicted by dynamic model**

o Prediction of Nucleation time for different thermal history

Simulation result of experiment 1-3.

Thank you!

