4. Crystal growth

4.1 Crystal surface

 $v_K \ge v_S \ge v_F$

where v_K , v_S and v_F are linear growth rates at kink, step and flat, respectively.

4.2 Crystal-fluid interface

- Multilayer model (Tempkin, 1966)

$$
\Delta E = 2\phi_{ss} + 2\phi_{ff} - 4\phi_{sf}
$$

where

 ∆*E* : the energy change occurring when a perfectly flat surface is roughened by removing one block from surface and using it to start a new layer.

 ϕ_{ss} : the interaction energy between the sides of each solid block

 ϕ_f : the interaction energy between the sides of each fluid block

 ϕ_{sf} : the interaction energy between the sides of fluid and solid block

Dimensionless term; α

$$
\alpha = \frac{\Delta E}{kT}
$$

If α is low, the growth can proceed easily with many sites always presents. $(2 < α < 20)$

For vapor and melt growth,

$$
\alpha = \xi \frac{\Delta H}{RT}
$$

where ∆H is heat of sublimation and fusion

For solution growth,

$$
\alpha = \xi \left[\frac{\Delta H_f}{RT} - \ln x_{eq} \right]
$$

where ΔH_f is heat of fusion and x_{eq} is the solubility.

− ξ is crystallographic factor describing intermolecular interactions in the crystal surface of interest.

$$
\xi = \frac{E_{sl}}{E_{ss}} \approx \frac{z_s}{z_t}
$$

where

 E_{sl} : total interaction energy per molecule in the layer of the growth face

Ess : total crystallization (lattice) energy

 z_s , z_t : numbers of nearest neighbours.

- Growth process

- 1) Desolvation
- 2) Surface diffusion
- 3) Integration into kink.

4.3 Growth mechanism

- Continuous growth (α*<3)*

Every growth unit arriving at the surface will find a growth site.

$$
v = k_{CG}\sigma
$$

- Surface nucleation (3< α*< 5)*

Adsorbed growth units form surface nuclei or island.

 $v=f_1$ (number of critical size nuclei formed per unit time)* f_2 (step height)* f_3 (step velocity)

Then,

$$
v = k_{SN} \sigma^{5/6} \exp[-\frac{\pi}{3\sigma} (\frac{\gamma_e}{kT})^2]
$$

- Spiral growth $(\alpha > 5)$

 $v=f_1$ (step velocity)* f_2 (step height)* f_3 (step density)

BCF equation

$$
v = k_{SG} \frac{\sigma^2}{\sigma_1^2} \tanh(\frac{\sigma_1}{\sigma})
$$

where $\sigma_1 \propto \frac{\gamma_e}{s}$.

If $\sigma \ll \sigma_1$, $v \propto \sigma^2$ (parabolic growth rate)

If $\sigma_1 \ll \sigma$, $v \propto \sigma$ (linear growth rate)

4.4 The importance of mass transfer

Two consecutive steps for crystal growth are

1) for surface integration step

$$
R_G = k_r (c_i - c_{eq})^r
$$

2) for mass transfer step

$$
R_G = k_d (c_\infty - c_i)
$$

Then,

$$
R_G = k_r[(c_{\infty} - c_{eq}) - \frac{R_G}{k_d}]^r
$$

If r=1,
$$
R_G = k_G[(c_{\infty} - c_{eq})]
$$
,

where,

$$
\frac{1}{k_G} = \frac{1}{k_d} + \frac{1}{k_r}
$$

*- Effectiveness factor (*η *)*

Definition,

$$
\eta_r = \frac{\text{growth rate at interface condition}}{\text{growth rate if interface were exposed to bulk condition}}
$$

Then,

$$
\eta_r = (1 - \eta_r Da)^r
$$

where *Da* is Damkohler number

$$
Da = \frac{k_r (C_\infty - C_{eq})^{r-1}}{k_d}
$$

If *Da*>>1, the crystal growth rate is controlled by mass transfer step.

If *Da* << 1, the crystal growth rate is controlled by surface integration step.

(Ref.: Journal of Crystal Growth, 235, 529-540 (2002))