천연가스 구성 성분들에 대한 물성 및 열역학적 모델식 소개

2020년 2월 11일(화) 공주대학교 화학공학부 <u>조 정 호</u>

1	천연가스 구성 성분들의 고정 물성
2	Aspen HYSYS 내의 Peng-Robinson 모델식의 BIP's Regression
3	Fortran을 이용한 다양한 목적함수 Regression
4	GERG-2008 모델식과 다른 모델식 사이의 비교

천연가스 구성 성분들의 고정 물성

천연가스(Natural Gas)란?

- ➤ 주성분은 메탄(CH₄)이고, 에탄(C₂H₆) 함량이 많고 적음에 따라서 rich gas와 lean gas로 구분한다.
- 천연가스 처리공정의 3개의 키워드:
 - Purification(전처리 공정)
 - 천연가스 중의 불순물: 이산화탄소, 황화수소, 수분, 수은 등
 - 불순물 제거 공정: AGRU, Dehydration Process 등
 - Volume Reduction(액화공정: Liquefaction Process)
 - 천연가스를 액화시키는 이유
 - 부피가 600분의 1로 줄어들기 때문에 저장 및 수송이 용이하다.
 - 동일한 저장 부피에 600배 많은 천연가스를 저장할 수 있다.
 - 이송시에 가스배관보다 액체 배관의 직경이 더 작다.
 - 기체 이송시에 압축기를 사용하는 것 보다 액체 이송 시에 펌프를 사용하면 동력을 줄일 수 있다.
 - Separation(NGL 회수공정)
 - 에탄 이상의 성분을 회수하는 공정

천연가스 구성 성분들:

- > 천연가스 구성 성분들:
 - CO₂: 불순물로 AGRU 공정에 의해서 제거되어야 할 성분
 - H_2O : 불순물로 Dehydration 공정에 의해서 제거되어야 할 성분
 - N₂: 천연가스 구성성분 중의 하나이지만 열량가는 없음
 - CH₄: 대부분을 차지하는 성분임
 - C₂H₆: **에탄 함량의 많고 적음에 따라서** Rich와 Lean으로 나뉘어짐
 - C₃H₈: 소량 존재
 - Iso-C₄H₁₀: 미량 존재
 - N-C₄H₁₀: 미량 존재

3가지 기본적인 물성들:

- > 3 Most Fundamental Fixed Properties:
 - Molecular Weight
 - Standard Liquid Density
 - Normal Boiling Point

Component	MW (kg/k-mol)	Density (kg/m ³)	NBP (°C)
N ₂	28.0135	807.96	-195.81
CO ₂	44.0098	816.43	-78.48
CH ₄	16.0428	299.70	-161.49
C ₂ H ₆	30.0696	355.04	-88.60
C ₃ H ₈	44.0965	505.79	-42.04
Iso-C ₄ H ₁₀	58.1234	563.84	-11.72
N-C ₄ H ₁₀	58.1234	584.33	-0.50

2

Aspen HYSYS 내의 Peng-Robinson 모델식의 BIP's Regression

천연가스 구성 성분들의 물성:

Critical Properties:

Simulator	Properties	Unit	N ₂	CO ₂	CH₄	C₂H ₆	C ₃ H ₈	iC₄H ₁₀	nC₄H ₁₀
	HYSYS		126.19	304.10	190.69	305.42	369.89	408.09	425.19
Critical Temperature	PRO/II	K	126.20	304.21	190.56	305.32	369.83	408.14	425.12
	Aspen Plus		126.20	304.21	190.56	305.32	369.83	407.80	425.12
	HYSYS		3,394.37	7,370.00	4,640.68	4,883.85	4,256.66	3,647.62	3,796.62
Critical Pressure	PRO/II	kPa	3,400.00	7,383.00	4,599.00	4,872.00	4,248.00	3,648.00	3,796.00
	Aspen Plus		3,400.00	7,383.00	4,599.00	4,872.00	4,248.00	3,640.00	3,796.00
	HYSYS		0.03998	0.23894	0.01155	0.09860	0.15240	0.18479	0.20100
Acentric Factor	PRO/II	-	0.03772	0.22362	0.01155	0.09949	0.15229	0.18077	0.20016
	Aspen Plus		0.03772	0.22362	0.01154	0.09949	0.15229	0.18352	0.20016

각각의 이성분계 쌍에 대한 BIP's:

➢ BIP's Built-in P2, A+, HYSYS and DECHEMA:

	N2	CO2	CH4	С2Н6	СЗН8	iC4H10	nC4H10	
		-0.0170	0.0350	0.0500	0.0800	0.0900	0.0900	<u> </u>
		-0.0170	0.0311	0.0515	0.0852	0.1033	0.0800	▲
NZ		-0.0200	0.0360	0.0500	0.0800	0.0950	0.0900	
		-0.0200	0.0300	0.0440	0.0780	0.1000	0.0870	<u> </u>
			0.0919	0.1322	0.1241	0.1200	0.1333	DECHEMA
cor			0.0919	0.1322	0.1241	0.1200	0.1333	
002			0.1000	0.1298	0.1350	0.1298	0.1298	
			0.0900	0.1300	0.1200	0.1300	0.1350	
				-0.0026	0.0140	0.0256	0.0133	
СЦЛ				-0.0026	0.0140	0.0256	0.0133	
0114				-0.00224	0.00683	0.01311	0.01230	
				-0.0030	0.0160	0.0260	0.0190	
					0.0011	-0.0067	0.0096	
C2H6					0.0011	-0.0067	0.0096	
02110					0.00126	0.00457	0.00410	
					0.0010	-0.0070	0.0100	
						-0.0078	0.0033	
СЗНЯ						-0.0078	0.0033	
00110						0.00104	0.00082	
						-0.0070	0.0030	
							-0.0004	
							-0.0004	
IC4H10							0.00001	
							0.0000	

물성 연구에 사용된 천연가스 구성 성분들:

Number of Systems for Each Binary Pairs: 21 Binary Pairs !!!

iC₄H₁₀ CO_2 **CH**₄ C_2H_6 C₃H₈ nC_4H_{10} N_2 Set No. Set No. Set No. Set No. N₂ Set No. Set No. 2 3 4 5 1 6 Set No. Set No. CO_2 Set No. Set No. Set No. 7 8 9 10 11 Set No. Set No. CH₄ Set No. Set No. 12 13 14 15 Set No. Set No. C_2H_6 Set No. 16 18 17 C₃H₈ Set No. Set No. 19 20 iC₄H₁₀ Set No. 21 nC₄H₁₀

Peng-Robinson Equation of State:

The PR equation is represented by:

$$P = \frac{RT}{v-b} - \frac{a}{v(v+b) - b(v-b)}$$

Peng-Robinson Equation of State

where:

$$a = a_c \alpha$$

 $a_c = 0.45724 \frac{R^2 T_c^2}{P_c}$ $b = 0.07780 \frac{RT_c}{P_c}$

The alpha function to estimate pure component vapor pressure is shown:

$$\alpha = \left[1 + \kappa \left(1 - \sqrt{T_r}\right)\right]^2 \qquad \kappa = 0.37464 + 1.5422\omega - 0.26992\omega^2$$

Peng-Robinson Equation of State:

The mixing rules available for the PR EOS state are shown below,

$$a_{mix} = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j a_{ij}$$
 $b_{mix} = \sum_{i=1}^{N} b_i x_i$

 $a_{ij} = \sqrt{a_i a_j} (1 - k_{ij})$

Regressed binary interaction parameter

- > Mixing Rule 1: $k_{ij} = a_{ij}$
- > Mixing Rule 2: $k_{ij} = 1 a_{ij} + \frac{b_{ij}}{T}$

> Mixing Rule 3:
$$k_{ij} = 1 - a_{ij} + b_{ij}T$$

Searching for Experimental VLE Data:

Isothermal vapor-liquid equilibrium data in DECHEMA DB for each binary pairs containing N₂, CO₂, CH₄, C₂H₆, C₃H₈, iC₄H₁₀, nC₄H₁₀

	N ₂	CO ₂	C ₁	C ₂	C ₃	IC ₄	NC ₄
N ₂		54	145	102	45	16	31
CO ₂			96	69	41	15	67
C ₁				106	86	12	106
C ₂					70	20	33
C ₃						45	27
IC ₄							36
NC ₄							

Total: 1,222 Binary Experimental Isothermal Binary Data !!!

Binary Experimental VLE Data:

Dortmund Data Bank (DDB) Finder Components I Component to Search : Prind METHANE Component 2 1054 Find ETHANE DECHE						ver 100 b ECHEMA	inary pairs DB for C1-0	are avail C3 pair.	able in	
			Search	DDB	🛢 Dortmund Data Bank (DD)B) Finder				
Sothermal F Isothermal F Isothermal F Isothermal F Isothermal F Isothermal F Isothermal F Isothermal F	2 T X Y of METH 2 T X Y of METH	ANE + ETHANE ANE + ETHANE	at 180,00 K (2 at 260,00 K (2 at 270,00 K (2 at 280,00 K (2 at 233,00 K (2 at 255,00 K (2 at 255,00 K (2 at 172,04 K (2 at 227,59 K (2 Show	2) - 11 pts 2) - 14 pts 3) - 14 pts 3) - 16 pts 4) - 2 pts 5) - 2 pts 5) - 2 pts 5) - 2 pts 5) - 4 pts 5) - 5 pts 5)	[Components] Number of Component to Searc Component 1 1051 Component 2 237	Find METHANE	Reset			
Total Number	of Sustame '	106	-1							
, oter Mariber	or bysterns :					Searc	Dortmund Data Bank	(DDB) Finder		
Sor	t Option	Heterences	+ For P Condit	ion	Isothermal P, T, X of METHANE	+ PROPANE at 91,70 K (2	- [Components]			
Da	ta Sets	Binary Only)		Isothermal P,T,X of METHANE	+ PROPANE at 112,60 K (+ PROPANE at 128,40 K (Number of Component to S	earch: 2	Reset	
—					Isothermal P.T.X.Y of METHAN	E + PROPANE at 172,04 K F + PROPANE at 199,82 K	Component 1 1051	Find METHANS		
T/K)		V	V		Isothermal P.T.X.Y of METHAN	E + PROPANE at 227,59 K E + PROPANE at 255,37 K	Component 1 1051			
	P(KPa)	X	T		Isothermal P.T.X.Y of METHAN	E + PROPANE at 283,15 K	Component 2 41	BUTANE		
280	2/96.6	0.0000	0.0000		j isoulermal P, I, X, Y of METHAN	E + PhOPANE at 211,59 K				
280	2887.8	0.0081	0.0279			Shov				
280	3075.2	0.0231	0.0744		Total Number of Systems :	86	[
280	3203.9	0.0335	0.1036		Sart Option	Beferences + T or P Coor	L	Search DD	В	
280	3655.8	0.0693	0.1864				Isothermal P, T, X, Y of METH	ANE + BUTANE at 177,59 K (2) -	9 pts 14 pts	^
280	4037.8	0.0996	0.2404		Data Sets	Binary Only	Isothermal P,T,X,Y of MET	TANE + BUTANE at 244,26 K (2) -	25 pts 20 pts	
280	4415.7	0.1292	0.2818				Isothermal P, T,X,Y of METH Isothermal P, T,X,Y of METH	TAINE + BUTAINE at 277,59 K (2) - TANE + BUTANE at 377,59 K (2) -	5 pts	
280	4711.6	0.1528	0.3091				Isothermal P, T, X, Y of METH Isothermal P, T, X, Y of METH	1ANE + BUTANE at 410,93 K (2) - 1ANE + BUTANE at 294,26 K (2) -	24 pts	
280	5040.9	0.1798	0.3336				Isothermal P, T, X, Y of METH Isothermal P, T, X, Y of METH	1ANE + BUTANE at 310,93 K (2) - 1ANE + BUTANE at 327,59 K (2) -	23 pts 20 pts	~
280	5329.7	0.2044	0.3512					Show Data	9	1
280	5645.8	0.2333	0.3654	ISOTHERMA	I P T X Y OF METHANE	+ FTHANF AT				
280	5984.3	0.2668	0.3719	280.00 K (2	2) – 16 PTS		Total Number of Systems :	106		1
280	6086.6	0.2774	0.3711		,		Sort Option	References + T or P Condition	•	Exit
280	6191.0	0.2913	0.3675	Reference:	GUPTA M.K.,GARDNER	G.C.,HEGART	Data Sets	Binary Only		
280	6265.9	0.3046	0.3609	Y M.J.,KIDN	IAY A.J., J.CHEM.ENG.E	DATA, 25,313(Data Coto	January only		
280	6202.3	0 3100	0 3557	1980)						

VLE Data Regression: Objective Functions

Bubble Pressure

$$Obj. = \sum_{j=1}^{N} \left(\frac{P_j^{\exp} - P_j^{cal}}{P_j^{\exp}} \right)^2$$

Chemical Process Research Lab.

Kongju National University

K-Value

15/69

$$Obj. = \sum_{j=1}^{N} \left(\frac{K_j^{\exp} - K_j^{cal}}{K_j^{\exp}} \right)^2$$

이 경우에는 Bubble Pressure 추산을 다소 희생시켜야 함

부정확한 실험 데이터 제외:

Chemical Process Research Lab. Kongju National University

>CO₂-C₂H₆ System

 $>CO_2-C_3H_8$ System

CH₄-nC₄H₁₀ System

0.6 0.6 Default Kij vs. Tem perature Default Kij vs. Tem perature Average Kij vs. Temperature Average Kij vs. Temperature Binary Interaction Parameter, Kij Binary Interaction Parameter, Kij 0.4 0.4 Regressed Kij vs. Temperature Regressed Kij vs. Temperature 0.2 0.2 0.0 0.0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 180 200 220 260 280 300 320 340 140 160 320 340 160 240 180 200 220 240 260 280 300 Temperature (K) Temperature (K) \succ C₂H₆-nC₄H₁₀ System \succ C₃H₈-iCH₁₀ System 0.6 0.6 Default Kij vs. Tem perature Default Kij vs. Tem perature Average Kij vs. Temperature Average Kij vs. Temperature Binary Interaction Parameter, Kij Binary Interaction Parameter, Kij 0.4 0.4 Regressed Kij vs. Temperature Regressed Kij vs. Temperature 0.2 0.2 0.0 0.0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 240 260 280 300 320 340 360 380 400 420 260 280 300 320 340 360 380 400 420 Temperature (K) Temperature (K)

 $> C_2H_6-C_3H_8$ System

$\overline{}$	N2	CO ₂	C 1	C 2	Сз	IC4	NC ₄
NI.		-0.0200	0.0360	0.0500	0.0800	0.0950	0.0900 -
IN2		0.0080	0.0440	0.0461	0.0973	0.1311	0.0962 -
$\mathbf{CO}_{\mathbf{c}}$			0.1000	0.1298	0.1350	0.1298	0.1298
			0.0358	0.1360	0.1290	0.1363	0.1418
				-0.00224	0.00683	0.01311	0.0123
5				0.0100	0.0282	0.0120	0.0273
\mathbf{C}_{2}					0.00126	0.00457	0.0041
02					0.1290	0.1360	0.0022
						0.00104	0.00082
03						-0.00227	-0.0077
							0.00001
104							0.0004725
NC ₄							

, kij Built-in HYSYS , <mark>New kij</mark>

AAD(absolute average deviation) (%) $AAD(\%) = \sum_{j=1}^{N} \left| \frac{P_j^{\exp} - P_j^{cal}}{P_j^{\exp}} \right| \times 100$ Dot ted: 실험 Data Line: New kij 값을 사용하여 추산한 결과 6000 90.67K 120K \bigcirc 130K 5000 140K 150K 160K \bigcirc 4000 170K Pressure(kPa) 3000 2000 0 \cap 1000 Λ 0.0 0.2 0.4 0.6 0.8 1.0 Mole Fraction of N2

- ·	N ₂ -CH ₄ AAD(%)			
Iemperature (K)	k _{ij} built-in	new k _{ii}		
. ,	HYSYS	ij		
90.67	4.449%	2.787%		
100.00	0.989%	0.686%		
115.00	0.836%	0.417%		
120.00	1.142%	0.570%		
127.59	0.885%	0.652%		
130.00	1.006%	0.710%		
133.15	1.597%	0.990%		
138.46	1.525%	0.824%		
140.00	1.124%	0.705%		
144.26	1.457%	0.682%		
149.82	1.306%	0.882%		
150.00	0.920%	0.731%		
153.37	0.681%	0.288%		
160.00	0.865%	0.779%		
160.93	1.275%	1.111%		
166.48	0.476%	0.562%		
170.00	1.172%	0.892%		
Average	1.277%	0.839%		

$$AAD(\%) = \sum_{j}^{N} \left| \frac{P_{j}^{\exp} - P_{j}^{cal}}{P_{j}^{\exp}} \right| \times 100$$

- ·	CO ₂ -C ₂ H ₆ AAD(%)			
lemperature (K)	k _{ij} built-in HYSYS	new k _{ij}		
220.00	2.457%	1.279%		
222.04	2.861%	1.294%		
223.15	1.643%	0.624%		
243.15	0.891%	0.792%		
244.26	1.568%	0.776%		
250.00	1.193%	0.580%		
252.95	1.298%	1.241%		
263.15	0.435%	0.853%		
266.48	0.824%	0.924%		
283.15	0.752%	0.867%		
288.15	0.695%	0.656%		
291.15	0.664%	0.626%		
293.15	0.966%	0.671%		
298.15	0.521%	0.375%		
Average	1.198%	0.826%		

$$AAD(\%) = \sum_{j}^{N} \left| \frac{P_{j}^{\exp} - P_{j}^{cal}}{P_{j}^{\exp}} \right| \times 100$$

Temperature (K)	CH ₄ -C ₂ H ₆ AAD(%)				
	k _{ij} built-in HYSYS	new k _{ij}			
172.04	1.118%	1.231%			
180.00	1.325%	0.880%			
190.87	0.636%	0.832%			
199.93	1.064%	1.447%			
230.00	0.369%	0.345%			
260.00	0.844%	0.694%			
280.00	1.430%	1.248%			
Average	0.969%	0.954%			

$$AAD(\%) = \sum_{j}^{N} \left| \frac{P_{j}^{\exp} - P_{j}^{cal}}{P_{j}^{\exp}} \right| \times 100$$

T a man a matuma	CH ₄ -C ₃ H ₈ AAD(%)			
(K)	k _{ij} built-in HYSYS	new k _{ij}		
158.15	6.051%	3.300%		
172.04	4.105%	1.984%		
187.43	2.588%	1.406%		
190.93	1.144%	1.575%		
192.26	2.300%	2.202%		
195.15	2.706%	1.717%		
199.82	2.936%	1.986%		
213.71	2.379%	3.281%		
277.59	2.620%	1.199%		
294.26	2.128%	0.713%		
310.93	2.277%	0.951%		
Average	2.840%	1.847%		

$$AAD(\%) = \sum_{j}^{N} \left| \frac{P_{j}^{\exp} - P_{j}^{cal}}{P_{j}^{\exp}} \right| \times 100$$

T a wan a watu wa	CH₄-iC₄H ₁₀ AAD(%)				
(K)	k _{ij} built-in HYSYS	new k _{ij}			
198.15	1.306%	1.287%			
213.15	2.256%	1.545%			
233.15	4.602%	4.207%			
253.15	2.731%	2.556%			
273.15	5.030%	3.943%			
293.15	2.655%	2.247%			
310.93	2.321%	2.805%			
310.95	2.495%	2.275%			
344.25	1.555%	1.895%			
Average	2.772%	2.529%			

	N2	CO ₂	C 1	C2	C3	IC4	NC4	kii Built-ii
N2		3.340%	1.277%	7.040%	8.044%	5.428%	5.372%	New kii
		3.187%	0.839%	7.020%	5.478%	5.206%	5.161%	
<u> </u>			2.179%	1.198%	1.862%	2.842%	2.735%	
			2.112%	0.826%	1.683%	2.599%	2.723%	
C				0.969%	2.840%	2.772%	4.909%	
				0.954%	1.847%	2.529%	4.887%	
C 2				\sim	2.840%	2.214%	3.387%	
					1.847%	2.556%	3.387%	
C 2					\searrow	1.823%	1.364%	
						1.457%	1.274%	
						\searrow	0.708%	
							0.703%	
NC4								

Result: Comparison of AAD(%) vetween kij built-in HYSYS and New kij

3 Fortran을 이용한 다양한 목적함수 Regression

CO_2 - C_2H_6 System에 대해서 우선 적용:

PRO/II

case	Object Function	BIP Mixing Rule	aij	bij	P AAD (%)	y AAD (%)
1_1	Bubble P	kij= aij	0.1341		0.9083	2.6029
1_2	Bubble P	kij= aij+ <mark>bij/T</mark>	0.1123	5.2223	0.8602	2.6051
2_1	Bubble P + y	kij= aij	0.1331		0.8735	2.6085
2_2	Bubble P + y	kij= aij+ <mark>bij/T</mark>	0.0981	8.2761	0.8427	2.6148

AspenPlus (Tc, Pc, w 값이 PRO/II와 동일하여 값이 같음)

case	Object Function	BIP Mixing Rule	aij	bij	P AAD (%)	y AAD (%)
1_1	Bubble P	kij= aij	0.1341		0.9083	2.6029
1_2	Bubble P	kij= aij+ <mark>bij/T</mark>	0.1123	5.2223	0.8602	2.6051
2_1	Bubble P + y	kij= aij	0.1331		0.8735	2.6085
2_2	Bubble P + y	kij= aij+ <mark>bij/T</mark>	0.0981	8.2761	0.8427	2.6148

HYSYS

case	Object Function	BIP Mixing Rule	aij	bij	P AAD (%)	y AAD (%)
1_1	Bubble P	kij= aij	0.1378		0.9550	2.6618
1_2	Bubble P	kij= aij+ <mark>bij/</mark> T	0.0986	9.5020	0.8530	2.6642
2_1	Bubble P + y	kij= aij	0.1361		0.9469	2.6688
2_2	Bubble P + y	kij= aij+ <mark>bij/</mark> T	0.0948	9.7124	0.8438	2.6590

Using Tc, Pc, ω in Aspen Plus or PRO/II:

chemical Process Research Lab.

(ongju National University

Using Tc, Pc, ω in Aspen HYSYS:

GERG-2008 모델식과 다른 모델식 사이의 비교

GERG-2008 Model:

> GERG-2008 Equation of State

- The European Gas Research Group
- Founded in 1961
- Developed based on Wagner's EOS
- Ruhr University, Bochum, Germany

REFPROP: Physical Property DB in NIST

> REFPROP

- Widely used in the Refrigeration Industry
- Available from Web Site

GERG-2008:

History of EOS in terms of Residual Helmholtz Free Energy (a^r)

Peng-Robinson: $\frac{a}{RT}$ Improved virial a^{r} Type EOS GERG 2004:

Ideal gas: $a^r = 0$

$$\begin{aligned} \frac{a^{\mathrm{r}}}{RT} &= \alpha^{\mathrm{r}}(\rho, T, \overline{x}) = \ln\left(\frac{1}{1-b\rho}\right) - \frac{a}{2\sqrt{2}RT} \ln\left(\frac{1+(\sqrt{2}+1)b\rho}{1-(\sqrt{2}-1)b\rho}\right) \\ \alpha^{\mathrm{r}} &= \sum_{k=1}^{4} \sum_{l=0}^{16} n_{kl} \,\delta^{k} \tau^{l/8} \\ &+ \exp(-\delta) \sum_{k=1}^{6} \sum_{l=0}^{22} n_{kl} \,\delta^{k} \tau^{l/8} \\ &+ \exp(-\delta^{3}) \sum_{k=1}^{5} \sum_{l=4}^{36} n_{kl} \,\delta^{k} \tau^{l/2} \\ &+ \exp(-\delta^{4}) \sum_{k=4}^{5} \sum_{l=0}^{16} n_{kl} \,\delta^{k} \tau^{l} \\ &+ \exp(-\delta^{5}) \sum_{k=1}^{2} \sum_{l=2}^{10} n_{kl} \,\delta^{2k-1} \tau^{2l} + \exp(-\delta^{6}) \sum_{k=4}^{8} \sum_{l=8}^{18} n_{kl} \,\delta^{k} \tau^{2l}. \end{aligned}$$

Accuracy of GERG-2008 EOS for Liquid Density:

Kunz,O., R. Klimeck, W. Wagner, M. Jaeschke; "The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures", http://www.gerg.info/publications/tm/tm15_04.pdf

Costald Model for LNG Liquid Density Estimation:

The corresponding-states liquid density model is suitable for prediction the liquid densities of "LNG-like" fluids. This accurate and reliable method is over 99.8% accurate in predicting the densities of light hydrocarbon mixtures.

$$V_{S} / V^{*} = V_{r}^{(0)} \left[1 - \omega_{SRK} V_{r}^{(\delta)} \right]$$
$$V_{r}^{(0)} = 1 + \sum_{1}^{4} A_{k} (1 - T_{r})^{k/3}, \quad 0.25 < T_{r} < 0.95$$
$$V_{r}^{(\delta)} = \left[\sum_{0}^{3} B_{k} T_{r}^{k} \right] / \left(T_{r} - 1.00001 \right) \quad 0.25 < T_{r} < 1.0$$

> Available Components

GERG-2008 EOS: Binary Interaction Parameters

Binary Interaction Parameters:

GERG is not superior to SRK in Predicting VLE:

P-X-Y Plot for ETHANE and CO2

GERG is not superior to SRK in Predicting VLE:

Isothermal Pxy & XY of $CH_4 + CO_2$ at 293.40K:

Liquid Mole Fraction of CH₄

hemical Process Research Lab. Kongju National University

Isothermal Pxy & XY of $CH_4 + C_3H_8$ at 310.93K:

Liquid Mole Fraction of CH₄

Chemical Process Research Lab. Kongju National University

Enthalpy Prediction Example:

Heat of Vaporization for Carbon Dioxide:

Heat of Vaporization for Methane:

Heat of Vaporization for Carbon Ethane:

Heat of Vaporization for Propane:

Heat of Vaporization for Isobutane:

Heat of Vaporization for Normal Butane:

Vapor Pressure for Carbon Dioxide:

Vapor Pressure for Isobutane:

Vapor Pressure for Normal Butane:

Propane-Ethylene-Methane 냉동 사이클:

THANK YOU