Electrokinetic/Surfactant-Enhanced Removal of Hydrophobic Organic Contaminants (HOCs) in Subsurface Environments

Table of Contents

- Background
- Objectives
- Methodology
- Results and Discussion
 - Surfactant-Enhanced Removal (SER) of HOC
 - Solution Chemistry Effects on SER
 - Numerical Simulations of HOC Removal
 - Electrokinetic removal of HOC
 - Conclusions/Future Research

- Hydrophobic Organic Contaminants (HOCs)
 - Widespread presence in the environment
 - High toxicity (mutagenic and/or carcinogenic)
 - Persistent in the environment
- HOCs in Subsurface Environments
 - High affinity to solid phase
 - Slow dissolution/desorption rate
 - Inaccessibility of removal agents through fine soils
 - → No in-situ remediation technologies

Objectives

- Combination of
 - Enhanced HOC solubilization/desorption
 - Accelerated HOC transport from fine soils
- Goals
 - To evaluate the electrokinetic/surfactant removal of HOC from fine soil
- Considerations:
 - Effects of surfactant (micelles and sorbed surfactant) on EK properties of fine soil
 - Effect of EK on surfactant sorption and HOC partitioning

Methodology

- Experiments
 - Batch and column experiments
 - HOCs: Naphthalene and Phenanthrene
 - Surfactants: SDS, Tween 80, and Hydroxypropyl-β-cyclodextrin (HPCD)
 - Soil mineral: Kaolinite
- Numerical Model
 - 1-D Finite difference method (FDM)
 - Two components (HOC and surfactant) in three phases (water, micelle, solid) kinetic model

Surfactants in HOCs contaminated subsurface

• $K_{\min(D)}$, $\overline{K_{\min}}$, $K_{ss} = f(C_{HOC}, S_{surf}, pH, I)$

Micellar Partition Coefficient (K_{mic})

Solubility Enhancement Method

 \rightarrow only measure the saturation limit

Micellar Partition Coefficient (K_{mic})

Fluorescence technique

• can obtain K_{mic} s as a function of C_{HOCs}

Micellar Partition Coefficient (K_{mic})

Two-site model

 $K_{mic} = f (HOC type, HOC conc.)$

Surfactant Sorption on Kaolinite

Sorption isotherms

Aqueous Tween 80 or SDS Concentration (mM)

Surfactant Sorption on Kaolinite HPCD sorption isotherms

HOC Partitioning to Sorbed Surfactant

• HOC sorption isotherms (K_D)

HOC Partitioning to Sorbed Surfactant

$$K_{D} = \frac{C_{immob}}{C_{mob}} = \frac{S_{sorb} \cdot K_{ss} + K_{min}}{1 + K_{mic} \cdot (S_{surf} - CMC)}$$

Summary of HOC Partitioning Coeff. K_{mic} and K_{ss} (K_{oc} basis)

Solution Chemistry Effects on SER

CMC

K_{mic} for SDS - only affected by Ionic strength

Solution Chemistry Effects on SER

Surfactant sorption

<Ionic strength effects>

<pH effects>

Solution Chemistry Effects on SER

Zeta potential of kaolinite

<pH effect>

<Effect of sorbed surfactant>

Solution Chemistry Effects on SER
 Phenanthrene partitioning to sorbed SDS (K_{ss})

<Ionic strength effects>

<pH effects>

Solution Chemistry Effects on SER Effect of pH on structural difference of sorbed surfactant (admicelle)

Same mass of sorbed SDS on kaolinite - different pH

• Surfactant breakthrough curve (5 P.V.)

Phenanthrene + SDS (no sorption)

Phenanthrene + SDS (sorption)

Phenanthrene + HPCD

Pyrene + HPCD or SDS

Role of sorbed surfactant

- High affinity of sorbed surfactants for HOCs
 offers promising alternatives for removing HOCs
 from water (barrier walls, landfill liners)
- HOC partitioning to sorbed surfactants relative to surfactant micelles reduces the effectiveness of SER
 - SER can be effective for HOCs with higher retardation factors than those for the surfactants
- Cyclodextrin is a promising candidate for SER applications because of its low sorption to the solid phase

Surfactant type for EK operation ?

SDS

- Higher sorption at low pH
- $K_{ss} > K_{mic}$ (and higher K_{ss} at low pH)
- Tween 80
 - Higher sorption at low pH
 - $K_{ss} > K_{mic}$
 - Higher zeta potential with sorbed Tween 80
 HPCD
 - No sorption and no change in zeta potential
 - pH-independent HOC solubilization

Electrokinetic Removal of HOC

EK Cell

Electrokinetic Removal of HOC

Voltage changes

EK Removal of HOC

• Electrokinetic permeability (k_e=v_{EOF}/E)

EK Removal of HOC

Phenanthrene removal

Conclusions

- Surfactant sorption play an adverse role in the removal of HOC from solid phase (increase the HOC retardation)
- HOC partitioning to sorbed surfactant is dependent on the structure of sorbed surfactant

 Electrokinetic combined with HPCD flushing and buffer solution (or keeping the pH high) can effectively remove HOCs in fine soils

Future Research

 Microscopic investigation on the structure of sorbed surfactant as a function of surfactant dose (monolayer/bilayer) and solution pH (bilayer type), and corresponding HOC partitioning capacity

 Use of alternative agents for HOC solubility enhancement (bio-products or DOM)

 Development of numerical model to predict electrokinetic properties of soil with time (EOF, charge flow, pH, and voltage) and corresponding HOC transport

Future Research

 Application of *in-situ* EK process to remove migrated HOC toward cathode region (biodegradation, activated carbon, chemical degradation)

Acknowledgements

- Center for Energy and Mineral Resources, Texas A&M University
- US EPA through Gulf Coast Hazardous Substance Research Center (R82272-01-4)
- National Science Foundation (CTS-9630577)