Multivariate Statistical Analysis in Environmental Process

POSTECH Dept. Chem. Eng. PSE Lab.

Contents

- I. Multivariate Analysis
 - MLR
 - PCA
 - PCR
 - PLS
- II. Application
 - Slurry-Fed Ceramic Melter (SFCM)

Why is the multivariate analysis important in chemical process?

• From DCS(Distributed Control System) etc., we obtain many correlated data.

How do we treat these data ?

- → Multivariate Analysis
- Monitoring process condition
- Fault detection
- Diagnosis

- Obtaining stable

- condition
- Development of

the productivity

Chemical Analysis

- Calibration(training) and Prediction(test) steps
 - Find a model for its behavior (Y=f(X))
 - Test the model
- Mean-centering and scaling of variables
 - To make the calculation easier
 - Scaling
 - no scaling (same unit)
 - variance scaling (different unit) > variance =1

Data structure

Classical methods of statistics - MLR Long and Lean **Underlying Assumptions**

X-variables are independent. X-variables are exact.

Chemometrics - PCA, PLS, PCR Short and Fat - X-variables are not independent. - X-variables may have errors.

MLR (Multiple Linear Regression)

$$y = b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3} + \dots + b_{m}x_{m} + e$$

in samples

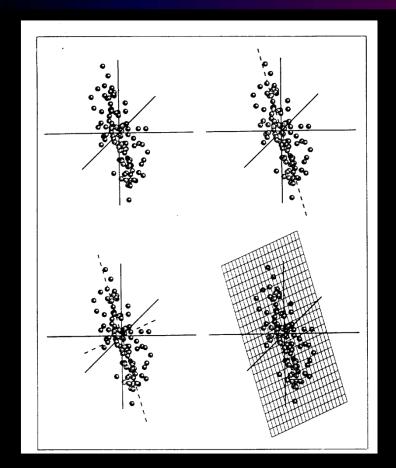
$$y = Xb + e \qquad \Longrightarrow \qquad \hat{b} = (X'X)^{-1}X'y$$

- Disadvantage
 - For m=n and m<n , the matrix conversion can cause problems

Multicollinearity of X (zero determinant) linear function among predictor variables

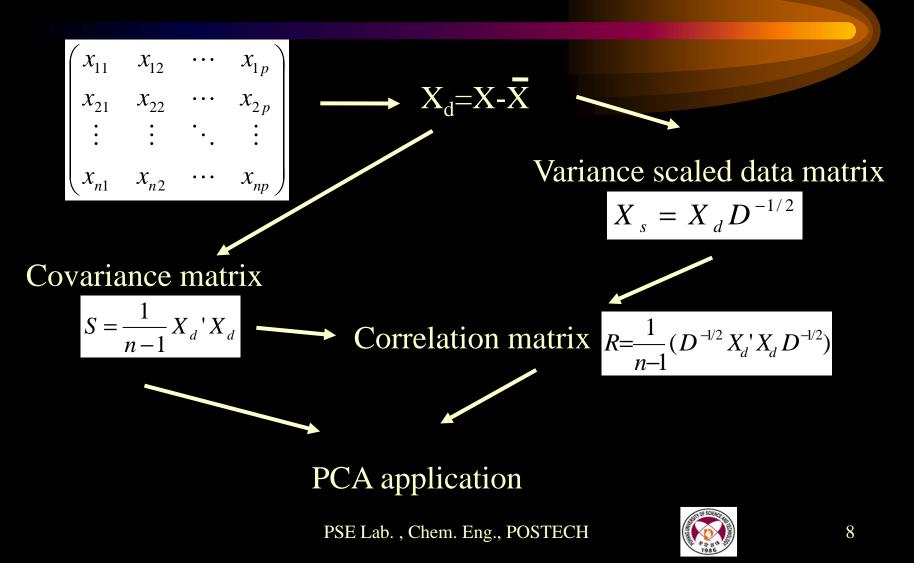
PSE Lab., Chem. Eng., POSTECH

PCA (Principal Component Analysis)



-Analyze a single block -Data compression and information extraction -PCA finds combinations of variables that describe major trends in a data set. -Think our body!! (We can specify our body with two dimension instead of using three dimension)

Sequence of adapting PCA



Meaning of PCA

 $X=M_1+M_2+M_3+\ldots+M_r$ where X is rank r, M_h is rank 1 $X = t_1 p_1' + t_2 p_2' + \dots + t_a p_a'$ = TP'

where t_h is score vector and p_h is loading vector

Caution :

모든 축들(PCs)과 그들에 대한 정사영값(Score vectors)을 이 용하여 시스템을 분석하는 것이 아니라 유일한 a개의 축들과 그것들에 투영된 정사영 값들만을 가지고 그들의 linear combination 으로 시스템을 근사하여 분석하게 된다.

Finding principal components

 $X=U\Sigma V'=TP'$ $\therefore T=U\Sigma, V=P$

Correlated variable x

Z=P'X

S = P L P' or P' S P = L

where L is a diagonal matrix containing the ordered eigenvalues of S and P is unitary matrix whose columns are the normalized eigenvectors of S

Uncorrelated variable z

 $t_h = X p_h$

$$S = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix} -$$

$$\lambda_{1} = 5.83$$
 $e_{1}' = [0.383, -0.924, 0]$
 $\lambda_{2} = 2.00$ $e_{2}' = [0, 0, 1]$
 $\lambda_{3} = 0.17$ $e_{3}' = [0.924, 0.383, 0]$

Principal component $Y_1 = e_1'X$, $Y_2 = e_2'X$, ..., $Y_p = e_p'X$

:. PC is $Y_1 = 0.383X_1 - 0.924X_2$ $Y_2 = X_3$ $Y_3 = 0.924X_1 + 0.383X_2$

각각의 eigenvalue는 corresponding principal component의 variance가 된다

NIPALS (Nonlinear Iterative Partial Least Squares)

- (1) take a vector x_j from X and call it $t_h : t_h = x_j$
- (2) calculate $p_h' = t_h' X/t_h' t_h \qquad \checkmark \qquad X = t_h p_h'$
- (3) normalize p_h to length 1:

 $\dot{p_{h \text{ new}}} = p_{h \text{ old}} / ||p_{h \text{ old}}||$

- (4) calculate $t_h: t_h = Xp_h/p_h p_h$
- (5) compare the t_h used in step2 with that obtained
 - in step 4. (iteration until they are same)

$$E_1 = X - t_1 p_1', E_2 = E_1 - t_2 p_2', \dots, E_h = E_{h-1} - t_h p_h'$$

PCR (Principal Component Regression)

$$Y = XB + E \longrightarrow Y = TB_r + E_r = TP'B + E$$

$$\therefore \hat{B}_r = (T'T)^{-1}T'Y = P'B$$

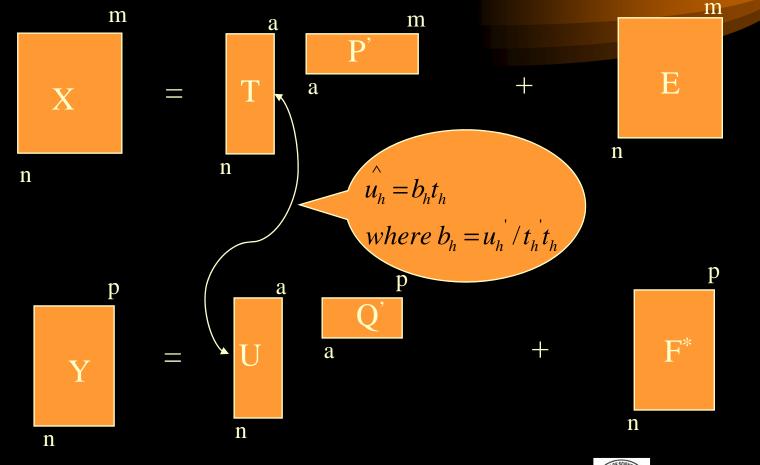
$$\hat{B}_r = P(T'T)^{-1}T'Y$$

The inversion of T'T gives no problem.

→ Solve collinearity problem in MLR

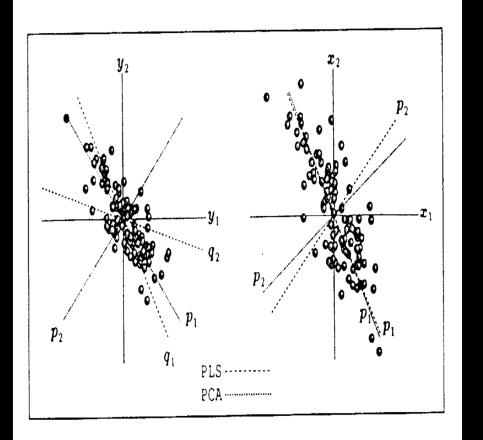
But, we can not say that score vector corresponding first PCs explain Y well, also.

PLS (Partial Least-Squares regression)



PSE Lab. , Chem. Eng., POSTECH

Comparison PCA with PLS



- Loading vectors in PCA are orthogonal.
- In PLS, the orthogonality is lost.
- The rotation allows a better model for the relation between two data matrices.

The PLS algorithm

Assume X and Y are mean-centered and scaled

For each component:(1) take $u_{start} = some y_j$ In the X bolck:(2) w' = u'X / u'u (regress columns of X on u)(3) $w'_{new} = w'_{old} / ||w'_{old}||$ (normalization)(4) t = Xw / w'wIn the Y block:(5) q' = t'Y / t't (regress columns of Y on u)(6) $q'_{new} = q'_{old} / ||q'_{old}||$ (normalization)(7) $u = Y_q / q'q$ Check convergence:(8) compare the t in step 4 with the one from the preceding iteration. If they are equal go to step(9), else go to step(2)

The PLS algorithm (continued)

Calculate the X loadings and rescale the scores and weights accordingly: (9) p' = t'X/t't (p' are replaced by weights w') (10) $p'_{new} = p'_{old}/||p'_{old}||$ (normalization) (11) $t_{new} = t_{old} ||p'_{old}||$ (12) $w'_{new} = w'_{old} ||p'_{old}||$

Find the regression coefficient b for the inner relation:

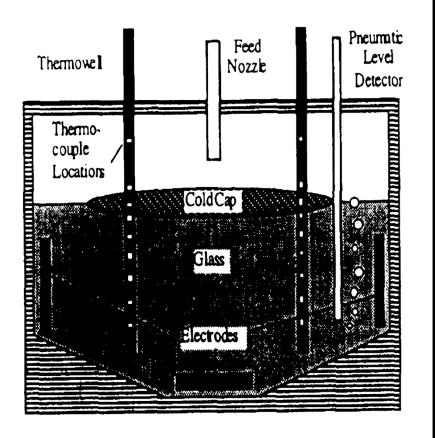
(13) b = u't/t't

Calculation of the residuals

$$E_{h} = E_{h-1} - t_{h}p_{h}^{'}; X = E_{0}$$

 $F_{h} = F_{h-1} - b_{h}t_{h}q_{h}^{'}; Y = F_{0}$

Application of PCA to chemical process

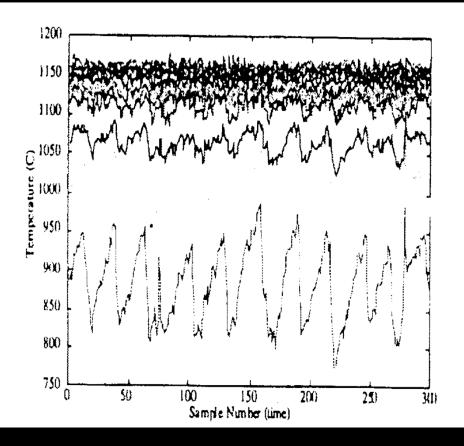


Slurry-Fed Ceramic Melter

nuclear fuel reprocessing wastes

→ stable borosilicate glass

Application of PCA to chemicalprocess(continued)

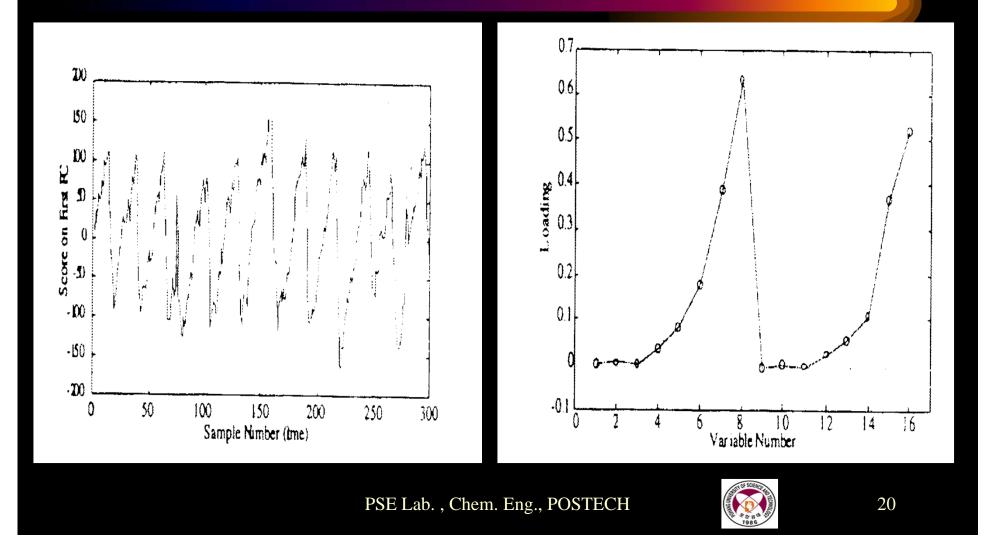


Variance captured by PCA model of

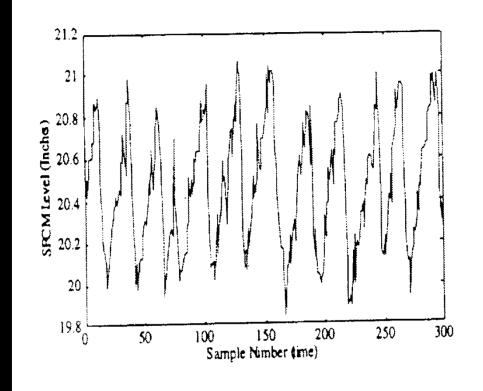
SFCM data

PC number	This PC	Percent
		variance
		captured
		Total
1	88.0711	88.0711
2	6.6974	94.7686
3	2.0442	96.8127
4	0.9122	97.7249
5	0.6693	98.3942
6	0.5503	98.9445
7	0.3614	99.3059
8	0.2268	99.5327

Application of PCA to chemicalprocess(continued)



Application of PCR and PLS



Develop a regression model that relates the temperature to the level of the molten glass

