Process Integration for Clean Technology

Prof. Robin SmithCentre for Process Integration UMIST

www.cpi.umist.ac.uk

Outline

- 1. Sources of Process Waste
- 2. Reactor Design for Clean Technology
- 3. Water System Design to Minimise Aqueous Effluents
- 4. Minimising Combustion Emissions
- 5. Concluding Remarks

1. Sources of Process Waste

How do we go about the design of a chemical process?

FIRST: Process Integration

THEN: Simulation

What is process integration?

selection of processing steps and connections between steps

Process design starts with the reactor

Now add the separation system

Now connect up the recycles

UMIST © DP12001

Now recover heat where possible

9 Process Integration for Clean Technology

UMIST © DPI 2001

The 'onion model' for the hierarchy of process design

Reactor + Separation System: together define process heating and cooling requirements Reactor:central to process synthesis problem

Heat Exchanger Networks recovers heat and dictates the need for external utilities

The process requires external heating and cooling utilities

Three sources of process waste:

- Reactor
- Separation and recycle systems
- Process operations

1. Waste Minimisation in Reactors

- Changing the reaction path to reduce or eliminate the formation of unwanted byproducts.
- Increasing reactor conversion when separation and recycle of unreacted feed is difficult.
- Increasing process yields of raw materials through improved selectivity in the reactor.
- Reducing catalyst waste by changing from homogeneous to heterogeneous catalysts and protecting catalysts from contaminants and extreme conditions that will shorten their life.

(Smith, "Chemical Process Design", McGraw - Hill)

DPI 2004

For example, changing the reactor configuration to exploit novel designs

.....and so on

2. Waste Minimisation in Separation and Recycle Systems

19 Process Integration for Clean Technology

DPI 2001

For example, eliminate extraneous materials

3. Waste Minimisation from Process Operations

- Batch operations
- Product changeovers
- Equipment washing
- Upset conditions

For example, in multi-product plants:

PRODUCT 'A'

PRODUCT 'B'

Schedule operations to minimise product changeovers

For example, equipment cleaning for viscous materials

Utility waste

Steam Boiler

Cooling Tower

Most utility waste from heating and cooling utilities

umist © DPI 2001

Combustion emissions can be reduced by :

- **7** changing fuel
- 7 changes to the utility system (e.g. better cogeneration)
- 7 process changes
- 7 improved heat recovery
- 7 chemical treatment (for NO_x and SO_x)

Aqueous emissions can be reduced by : 7 re-use of water (perhaps with partial treatment) 7 more efficient hot and cold utility system design

But

How can process integration help in producing clean technology ?

Let's look at some examples

2. Reactor Design for Clean Technology

Chemical Reactor Design: The Problem

- Reactor type and interconnections
- Mixing pattern, recycle/bypass structures

Common Industrial Practice

- Investigate various conventional or proven designs
- Scaleup by experimentation and rigorous modelling

• Heuristics and expert systems can help.

BUT

• These will direct us back to conventional designs.

INSTEAD LET US TAKE AFUNDAMENTAL APPROACH

Reactor Network

From Homogeneous to Multiphase . .

Reactor network for each phase Phase interaction through mass transfer

Multiphase Reactor Network Superstructure using Generic Reactor Compartments

- Two phase representation using reactors in pairs
- Can be extended to any number of phases

Different possible combinations of mixing patterns considered between every contacting pair of phases

Conventional Designs

... and Novel Designs

Simultaneous Optimisation Approach

IMIST 6 DPI 2001

Design Problem: Targeting vs Optimality

"Optimal Solution" replaced with ...

DPI 2001

Case Study: Synthesis of "-Chlorocarboxylic Acids

 $\left[(k_1 + k_2) C_{L_{MC_4A}}^{V_2} + \sqrt{k_1 k_2} C_{L_{DC_4A}}^{V_2} + k_2 C_{L_{C_4A}}^{V_2} \right] / (1 + k_3 C_{L_{CI_2}})$ $(5.22-^{3120}/_{T})$ $\qquad \qquad$ $\qquad \$ $r_1 = y|(k_1 + k_2)C^{\frac{1}{2}}_{L_{MC_4A}} + \sqrt{k_1k_2}C^{\frac{1}{2}}_{L_{DC_4A}} + k_2C^{\frac{1}{2}}_{L_{C_4A}})/(1 + k_3C^{\frac{1}{2}}_{L_{CLA}})$ ${\sf r}_2^{}={\sf k}_3{\sf r}_1{\sf C}_{\sf L_{\sf C}I_2}^{}$ $k_1 = e^{(3.22 - 7.7)}$ $k_2 = e^{(0.00176 - 7.7)}$ k $\mathsf{k}_\mathsf{3}= \mathsf{0.00136}$ $y = 0.037$ Catalyst molar fraction 5.22⁻³¹²⁰/₁) k_2 $=$ $\mathbf{e}^{(5.22-3129/\tau)}$ $\mathbf{k} = \mathbf{e}^{(0.00176-1889/\tau)}$ $\frac{1}{2}$ 4 $\frac{1}{2}$ 4 $\frac{1}{2}$ 2 $= v/(k_1 + k_2)C_1^2 + \sqrt{k_1k_2C_1^2} + k_2C_1^2$ //1+ = $Cl₂ + C₄A$ Ó $MC₄A + HCl$ $2Cl_2 + C_4A$ Ó $DC_4A + 2HCl$ $C_4A - \text{``-monochlorobutanoic acid, DC}_4A - \text{''}, \text{``-dichlorobutanoic acid}$

Salmi T, Paatero E, Fagerstolt K, Chem. Eng. Sci., 48(1993), pp.735-751.

Problem Data

Feed and Reaction Conditions

! $P = 10$ bar ! $^{\mathrm{!}}$ Liquid feed: 13.3 kmoles of C $_{\mathrm{4}}$ A $\,$ Gas feed: 100 kmoles of Cl $_{\rm 2}$!¹ Temperature bounds: 100 $^{\circ}$ C $_{c}$ T $_{c}$ 500 $^{\circ}$ C Phase equilibria and mass transfer $H_{C2} = H_{HC1} = 211.76$ bar $a = 254.6$ m²/m 3 , $\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right] = 0.5$, $\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right] = 10^{-4}$ m $1 D_{Cl2} = 6.66*10^{-9}$ m²/sec, $D_{Cl2} = 8.45*10^{-9}$ m²/sec Film model for mass transfer

Salmi T, Paatero E, and Fagerstolt K, Chem. Eng. Sci., 48(1993), pp.735-751 Romanainen and Salmi T, Chem. Eng. Sci., 47(1992), pp.2493-2498

Conventional Designs

Counter current packed bed

Mechanically agitated vessel Bubble column

 $Yield = 69.5%$

 $Yield = 74.4%$

Yield = 72.8%

ResultsNetwork model Reactor designs Gas product Liquid product \Rightarrow Gas Feed ৗ≻≺ Liquid Gas Product Gas Liquid Feed 聞★ Liquid Product Liquid feed Gas feed Yield = 96.9% $Vol = 9.93m³$ Liquid Liquid GasGas product product feed product

Results and Comparison

43 Process Integration for Clean Technology

IMIST 6 DPI 2004

But

This used continuous reactor technology.

Can we adapt the approach to batch processes ?

Schematic Diagram of Batch Reactor

45 Process Integration for Clean Technology

DPI 2001

Virtual Superstructure of Mutiphase Batch Reactor

This superstructure model of batch reactors converts the dynamic optimisation problem into structural optimisation problem which decides

The existence of streams and units

 The parameter values corresponding to each stream or unit

The task now becomes how to optimise them SIMULTANEOUSLY

!

Profile Implementation

Rather than generate profiles by integrating differential equations

We propose

Impose a shape of profile directly for each variable

Profile Search for Optimisation

Then, evaluate the objective values for each set of imposed profiles

Search profiles with different

Profiles

! Shapes !Start and end conditions

The optimal profiles can then be found

Optimise Objective: Fractional yield of MC_4A to C_4A

! Batch cycle time ! Feed addition rate (semi-batch) ! Temperature simultaneously

Results Illustration

!No recycle, all unreacted and produced gas is discharged, final batch time at 1.03hr

 Following the above operating conditions, the fractional yield of MC₄A to C₄A can reach 99.7%

Results and Improvements

!Counter current packed bed (continuous) 66.7% !Mechanically agitated vessel (continuous) 71.7% Bubble column (continuous) 69.9% $\frac{1}{2}$ Semi-batch with constant addition rate of Cl₂ (optimised) and constant temperature (optimised) 72.3% ! $\frac{1}{2}$ Semi-batch with constant addition rate of Cl₂ (optimised) under optimised temperature profile 72.3% $\frac{1}{2}$ Semi-batch with optimal addition rate of Cl₂ under optimised temperature profile 99.7% Reactor & operating mode

Fractional yield

of MC₄A to C₄A

3. Water System Design to Minimise Aqueous Effluents

3. REGENERATION RECYCLING

(Note: water can be recycled to processes in which it has been used previously - compare regeneration re-use)

RE-USE WATER AND EXPLOITDISTRIBUTED EFFLUENT TREATMENTNT

CONTAMINATED STORMWATER

Design Problem

Water Use Analysis

60 Process Integration for Clean Technology

UMIST ε DP12001

Water re-use

Design for re-use

Only one of the possibilities

Remarks

- Target and design for single contaminants **straightforward**
- Tedious for large problems
- Extension to multiple contaminants difficult
- Cannot deal with different mass transfer models
- Does not allow constraints to be included
- Does not consider capital cost

Superstructure Approach

(Doyle and Smith, Trans IChemE, <u>75B</u>, 181-189, 1997)

Example

Solution Without Piping Costs or Complexity Considerations

67 Process Integration for Clean Technology

DPI 2004

Now include:

- minimum flowrate of 1 t/h
- number of streams to any mixing junction to be maximum of 2
- include piping costs (pipe run lengths, materials of construction, diameters calculated from flowrates)

Minimise Total Cost

Flowrate s1= 432.4 t/h s2= 175.2 t/h (freshwater flowrate penalty 2.8%)

Comparison of results

Annualisation period: 3 years Interest rate: $10%$

Different structures for water networks

4. Minimising Combustion Emissions

Minimising Combustion Emissions at Source

- Increased energy efficiency at point of use
- Increased energy efficiency of the utility system
- Improvements to combustion processes
- Changing fuel

4.1 Increased Energy Efficiency at Point of Use Two broad approaches to improve energy efficiency:

(i) Conventional (ii) Process Integration

• Better heat recovery

- Better lagging
- Better control systems
- etc

HERE WE SHALL CONCENTRATE ON PROCESS INTEGRATION

The composite hot curve

 $kH = m Cp kT = CP 4kT$

The composite hot curve represents the total cooling requirement in each temperature interval

The composite cold curve

The composite cold curve represents the total heating requirement in each temperature interval.

For new designs

The composite curves set energy targets before design

Pinch design method allows targets to be achieved in design

Divide the process at the pinch

Design now achieves the target of 960 kW steam

4.2 Increased Energy Efficiency of the Utility System

DP12001

DPI 2001

Grand Composite Curve

Total Site Profiles

DP12001

Total site profiles

7 Allow steam generation and useage to be targeted for the whole site

BUT, heat recovery through the steam system is possible

Steam System Profiles

Total site profiles Site composite curves

7 Site composite curves allow heat recovery opportunities via the steam system to be identified

Poor matching of steam system against the site profiles

Leads to missing heat recovery opportunities (through the steam system) and hence excessive fuel consumption in the boiler house

In terms of cogeneration potential

Area **I** Shaftwork

(Raissi, PhD Thesis, UMIST, 1994)

Cogeneration opportunities can be lost

Missed SteamGeneration Potential

H

Poor match between profiles and steam system reduces power generation potential.

Too much let-down leads tomissed power generation opportunities.

H

T

7 Compex interactions exist

7 Need to consider impact of all aspects of utility system, combustion process design and treatment processes on flue gas emissions.

7 Require process integration techniques to understand these interactions.

5. Concluding Remarks

AND FINALLY

Many environmental problems from the process industries.

Waste from:

- Reaction systems
- Separation and recycle systems
- Process operations
- Utility systems

Process integration has a major role to play in solving these problems through the development of clean technology.

