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Abstract −−−− Batch processes can be monitored using MPCA, two 
different approaches have been proposed. Both methods are 
compared from a fundamental and practical point of view.  The 
scheme proposed by P. Nomikos and J.F. MacGregor gives a 
fine and robust process monitoring tool, the approach proposed 
by Wold et al gives a coarse monitoring tool and can lead to an 
“insensitive” control chart that doesn’t register all the process 
upsets and deviations from the desired performance. PLS can be 
successfully used for inferring properties of the batch if the PLS 
model has a fundamental background and meaning. The 
loadings of the calculated principal components can serve as a 
guide in building a business case when a MSPC solution is to be 
implemented. 
 

I. INTRODUCTION 
 
SPC has been used for several decades for process 
monitoring. Kresta, MacGregor and Marlin proposed the use 
of multivariate statistics for process monitoring (Kresta, 
MacGregor, Marlin, 1991). Multivariate SPC (MSPC) offers 
the possibility of analyzing the data coming from a DCS or 
from a real-time database and monitor closely the 
performance of the process. MSPC uses Principal Component 
Analysis (PCA) and Partial Least Squares (PLS) in order to 
monitor the process. 
 
PCA and PLS have been used successfully in many 
continuous industrial processes. Multi-Way PCA and PLS 
(MPCA, MPLS) was proposed by S. Wold et al (Wold, 
Geladi, Esbensen & Ohman, 1987) as an approach for batch 
process analysis, later P. Nomikos and J.F. MacGregor 
(Nomikos and MacGregor, 1994,1995,1995b) proposed a 
formal methodology for batch processes MSPC, using also 
MPCA and MPLS.  
 
Wold and collaborators (Wold, Kettaneh, Fridén, and 
Holmberg, 1998) proposed later their own batch process 
MSPC methodology, this method is used within SIMCA-P 
from Umetrics. 
 
The aim of this work is to compare both methods (Wold and 
Kettaneh, from Nomikos and MacGregor) in the 
effectiveness, robustness and ease of use, for monitoring an 
industrial process.  
 
The work is organized in the following way: First, both 
methods are presented and described; second, some 
fundamental issues are discussed; third, two industrial cases 
are presented; forth, PLS is discussed for inferential sensors 

in batch processes; fifth, we discuss how to build a business 
case, and last, some conclusions and future work. 
 

II. BATCH MSPC METHODOLOGIES 
 
Batch processes are, by nature, a 3D matrix of data (Fig. 1.) 
MPCA needs to unfold this matrix in order to obtain a 2D 
matrix of data, and then performing PCA/PLC. For unfolding 
this matrix, first it is divided into K “slices”; each resulting 
slice is a matrix with I rows and J columns. These slices are 
going to be unfolded. The direction of this unfolding will 
decide the mean centering direction and therefore the 
complete interpretation of the resultant principal components. 
The direction of this unfolding is the main difference between 
the methods to be compared. 
 

 
 

Fig.1. Batch data is a 3D matrix of data 
 
A. Nomikos and MacGregor approach. 
 
The unfolding proposed by the authors of this methodology is 
to be done time wise, so the resultant 2D matrix has I rows 
and (K X J) columns (Fig.2.). Then the matrix is mean 
centered, this is, to calculate the mean for each column, and 
then subtract it from the variables. This mean centering will 
remove the mean trajectory of each variable, and the 
monitoring of future batches will be done around this mean 
trajectory. 
 

 
 

Fig.2. Unfolding done time wise 
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The main objective of any automation system driving a batch 
process is to maintain the batch performance around the 
desired trajectory, so it will give on-spec product. The mean 
centering done with this method is alike a monitoring scheme 
around the mean trajectory of its variables (Fig 3). 
 

 
Fig.3. The mean centering is done around the mean trajectory. 

 
Once the matrix is mean centered and scaled, PCA is 
performed, the results from PCA are the loading vectors, and 
the calculated scores for each batch (Fig 4.). The loading 
vectors will have a weight for each variable at each time, so, 
when used for monitoring of future batches two problems 
arise (Fig.5.): 
 

 
 

Fig. 4. Loadings and scores for the unfolded matrix 
  
1) Missing data during monitoring: When a batch is been 
monitored, we know the values from the beginning and all 
the way to the current time, but there is a complete block 
missing in order to compute the value of the scores (and other 
statistics) at this current time. Nomikos and MacGregor 
suggest three different ways of dealing with this problem: 
 
a) Fill the missing values with the current values. 
b) Fill the missing values with zeros. 
c) Use the ability that PCA has to handle missing data. 
 
The implications of using one or another will be discussed 
later, the limits of the control charts will depend on the 
method used to deal with missing data. 
 
2) Batch lengths: The calculated loadings can be used for 
monitoring, only if we assume that all the following batches 
will have the same number of samples; this almost never 
happens, so, we need to use some kind of alignment for the 
batches. 

 
 

Fig. 5. Problems encountered when monitoring new batches. 
 
The most accepted idea is to use another variable, different 
from time, in order to mark the beginning and end of each 
batch, this variable has to grow monotonically during the 
batch, and has to have the same value at the end of all 
batches, one good example is conversion. 
 
The last method for synchronizing batches was proposed by 
MacGregor (Kassidas, MacGregor and Taylor, 1998) in this 
work they use the philosophy behind dynamic time warping 
(DTW) in order to align batches with different duration. 
DTW is a method used in computer science for speech 
recognition; a computer has to be able to recognize a word, 
regardless of the speed used to pronounce it, DTW is used to 
reorder the digitalized sound and fit it into a known pattern. 
 
The control charts come naturally since the values of the 
scores can be calculated as the batch advances. The limits for 
these charts are discussed in Nomikos and MacGregor, 1995. 
 
B. Wold and Kettaneh method. 
 
In this case the proposed unfolding is done batch wise, so the 
resultant matrix has (I X K) rows, and J columns. The matrix 
is mean centered batch wise (Fig.6.), so the “great mean” is 
removed from each variable.  
 
Doing so is like monitoring the batch around the mean of the 
variables during all the batch, this is rarely done in industry 
because a batch may keep its trajectory within the this limits, 
but give off-spec product, more issues regarding mean 
centering will be discussed later. 
 
After mean centering and scaling, a new vector is added 
arbitrarily to mark the maturity of the batch; this vector 
contains the timestamp of each sample (Fig.7), this vector can 
be replace for another one if available (like conversion), this 
vector is to be considered as the Y vector, and a PLS model is 
done to model the process variables and the new Y vector; 
the validity and significance of doing so is also to be 
discussed later. 
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Fig. 6 Mean centering batch wise 
 

 

     
 

Fig. 7. Maturity vector added to the data. 
 
 
 

 
 

Fig.8. Scores are reordered time wise in order to obtain the control charts. 
 

The resultant scores will show the difference between the 
time samples, and the loadings will reflect the correlation and 
importance of the process variables from an “overall” 
perspective, without taking in account the time dependency 
and correlation. 
 
In order to obtain the control charts, the scores of the model 
are reordered time wise, since the monitoring has to be time 
dependant, and a control chart is built based in the time wise 
mean of the scores, and their standard deviation (Fig. 8). 
Doing this, the method tries to correct the fundamental 
mistake done when building the model. 
 

III. FUNDAMENTAL IMPLICATIONS  
 
As mentioned before, there are some fundamental problems 
with doing the unfolding of data batch wise. The nature of the 
model, the quality of the monitoring, the weight given to 
different stages of the batch, and the interpretation of the final 
scores and loadings are some of them, and will be discussed 
in detail. 
 
A. Nature of the model. 
 
The monitoring problems we will face when using the 
Nomikos-MacGregor approach are both related to the time 
dependency of the model. These problems are not present in 
the Wold-Kettaneh scheme because the resultant model 
doesn’t include the time dependency of the correlation 
structure. 
 
Batch processes are by nature a dynamic process, and the 
correlation among the variables depends on time, so, any 
model that claims to represent the correlation between 
variables for a batch process must have this time dimension 
included. The loadings of the resultant model from unfolding 
batch wise do not include any variable that could account for 
the time dimension; it doesn’t make much sense to represent 
a time-dependant process with a non-time-dependant model. 
 
B. Quality of monitoring 
 
A profitable batch process has gone thru a lot of refining in 
the design (that is why it is profitable) in order to design the 
trajectory that the batch is supposed to follow. Especially in 
the polymer area, a small change in the trajectory may lead to 
off-spec product, so it is important to perform a fine 
monitoring scheme on the batch trajectory. 
 
When unfolding time wise, the mean centering and scaling 
leads to data that represents the deviation of the batch from 
the mean trajectory, and this is precisely what the loadings 
and scores will model, the deviation of each time sample 
from the desired mean trajectory (Fig. 9) 
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Fig. 9. Monitoring chart around the desired trajectory 
 
If the unfolding is done batch wise, the mean centered and 
scaled data will represent the deviation of the variables from 
the great mean (this is the average value of each variable 
during all the batch) and this is what we will be modeling 
with the loadings (Fig. 10). 
 

 
 

Fig. 10. Monitoring chart around the great mean 
 
It is quite obvious that the best monitoring scheme will be the 
one obtained with time wise unfolding, and this will be seen 
with the industrial examples presented further in this work. 
 
C. Weight given to different stages of the batch 
 
Batch processes often have several stages, (i.e. initiation, 
propagation, termination) or maybe the addition of a second 
catalyst to the reaction, or the presence of a strong 
exothermic period. These stages may have different impact in 
the final product quality, and most of the time they are 
separated by a period of randomness between variables, 
because of the absence of the driving force of the batch    
(Fig. 11). 
 
When the unfolding is done batch wise, the mean calculated 
takes in account this “random walk” periods. 

Hence, it is giving the meaningful periods the same 
importance that the noisy ones. In the Wold-Kettaneh 
approach, when the scores are time-wise reordered to 
calculate the means, and standard deviations they try to 
recover from this, but the “damage” is already done because 
the loadings are biased by this noisy batch periods. 
 
In the Nomikos-MacGregor approach, the unfolding is done 
time wise, and therefore we are giving freedom to the PCA or 
PLS method to find this “random walk” periods.  
 
We will expect the main variation in the process to be 
because of variations in the meaningful stages, rather than the 
noise (i.e. an impurity in the raw materials will affect the 
kinetics) so, if we analyze the loadings and the remaining 
sum of squares per time, we will be able to distinguish this 
periods of the batch where the correlation is just noise, 
because it will not be captured as part of the latent events 
occurring in the batch (Fig. 12).  
 

 
 

Fig. 11. Different stages of a batch 
 

 
 

Fig.12 Captured sum of squares shows a noisy period  
that is not been captured by the model. 
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D. Interpretations of the loadings and the scores 
 
In the Nomikos-MacGregor method (Fig.4), the scores 
calculated for each batch can be seen, as a “measure” of how 
different are batches from each other, each batch has a single 
“measure” that can be used to qualify a batch as “good” or 
“bad” (Fig. 13).  
 

 
 

Fig. 13. Score plot clearly shows if a batch is normal or not. 
 
The loadings calculated will reflect the correlation and 
importance between variables during time, and they will be 
easily interpreted in terms of the fundamental phenomena 
occurring in the batch, i.e. if original data includes 
temperatures and pressures, the loadings can be interpreted in 
terms of the energy balance around the system. 
 
Because of the time dependency of the model, the loadings 
can be easily interpreted, and their interpretation will offer 
deep understanding of the batch itself.  
 
This is a very important place where statistic and mechanistic 
models come together, the loadings of the principal 
components must reflect the fundamental phenomena 
occurring in the batch, and, in a PLS model, will represent the 
fundamental correlation between the X and the Y space. 
 
In the Wold-Kettaneh methodology, each time sample will 
have its score in such way that there will not be any single 
value to determine if the batch is good or not, the need of 
analyzing trajectories is still there in order to see if a bath is 
“good” or “bad” (Fig. 14).  
 
The interpretation of the loadings obtained with the Wold-
Kettaneh method will give an overall picture of the 
correlation between the batch variables but will not tell 
anything about the time relevance of them. So, in the best of 
the cases, we will be able to say that “a pressure is correlated 
with a temperature” and most of the times we already know 
that. 
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Fig. 14. Score plot obtained when the unfolding is batch wise,  

clustering is not visible 
 

IV. TWO INDUSTRIAL APPLICATIONS 
 

Data was taken from two polymer plants, one from a nylon 
process and another from a PVC process. Sets were analyzed 
using the methods described earlier, the software used was 
SIMCA-P, this program has the method by Wold-Kettaneh, 
and BatchSPC has the Nomikos-MacGregor approach. 
Besides the efficiency and ease of use of each method, other 
issues are analyzed like a rigorous solution to the problem of 
missing data when monitoring, and the validity of an 
inferential sensor during the batch using PLS. 
 
In each case we will walk thru the following path: 
 
a) Make a PCA model with raw data 
b) Look for outliers or clustering. 
c) Remove outliers and make another PCA model 
d) Analyze contributions for outliers or clusters. 
c) Analyze remaining variance (or sum of squares) or other 
statistics (Hotelling T2). 
 
A. Data from a nylon process. 
 
 Data set consists of 55 batches, 10 variables were sampled 
100 times for each batch. 
 
The first two principal components are obtained; Fig. 13 is 
the score scatter from BatchSPC and shows a clear clustering 
of batches 50 to 55, while in the SIMCA-P graph (Fig.15) 
instead of a clustering, we see batches 50-55 lying outside the 
control limits for the DModX chart. 
 
Removing batches 50 to 55 and redoing models, we will see 
no clearer clustering in the BatchSPC t1t2 plot (Fig. 16), but 
in the DModX chart (Fig. 17) we clearly see that batch 49 is 
very distant from the model, while in the SIMCA-P control 
chart, this is not easy to see (Fig.18). 
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Fig. 15 Control chart from SIMCA-P showing batches 50 to 55 outside the 

control limits 
 

 
Fig. 16 BatchSPC t1t2 chart without batches 50 to 55 

 

 
Fig. 17 Remaining sum of squares showing batch 49  

to be different from all the others 
 

 
 

Fig. 18 Looking at the SIMCA-P control charts  
 its not obvious that batch 49 is different 

 
In fact, once all the know batches are removed (using 
previous knowledge from data owner) we still see some 
clustering in the BatchSCP t1t2 score (Fig. 19) and we also 
can distinguish batches 22 and 14 as different from both 
clusters, while in the SIMCA-P this clustering is not visible 
(Fig. 20). The fact of having one score per batch – in 
BatchSPC- gives the possibility of studying the contributions 
of specific variables, in order to find more about the 
differences of a certain batch from a cluster of batches, from 
another batch or from the latent variable model. 

 

 
 

Fig. 19 BatchSPC t1 t2 score for good known batches 
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Fig. 20. SIMCA-P control charts only for good known batches. 

 
In this point of the analysis, the Wold-Kettaneh method has 
lost analysis capability; with the Nomikos-MacGregor model 
we can go further still. Since this approach does consider 
time, the contributions we can calculate will show “when” a 
variable was important for the deviation, i.e. for batch 22 the 
variable # 1 was important only during the first phase or stage 
of the batch, and variable # 8 was important only for the 
second stage of the batch (Fig 21). 
 
A PLS model tries to find the greatest variation dimension in 
the X space that explains the greatest one in the Y space, and 
it assumes a linear relationship between both latent spaces, a 
graph for the scores in the X and the Y spaces should show a 
linear relationship. 
 
Wold-Kettaneh method does a PLS model between the X 
matrix and a “maturity” vector. Fig 22 plot has t1 vs. u1 
showing clearly a non-linear relation. The predictions of time 
have multiple solutions and are far from a monotonic 
growing indicator of maturity. 
 
A PLS model should have a fundamental reason to predict the 
Y space, and if we look closer to the PLS model built in the 
Wold-Kettaneh method (Fig. 7), there is no fundamental 
reason of why each row of observations should predict the 
maturity variable since this is explained by the correlation of 
the process variables in time, and not from an individual time 
sample in the batch (I guess this is why the PLS model gives 
multiple solutions for a certain predicted time). 

 
 

 
 

Fig. 21. Contributions to the scores for two different variables in batch 22 
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Fig. 22 t1u1 plot for the PLS model done in SIMCA-P 
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B. Handling missing data when monitoring new batches. 
 
Mentioned earlier, there are three different approaches to 
solve the problem of missing data when monitoring a new 
batch (Fig. 5ii). One of the approaches suggested by Nomikos 
and MacGregor include the use of the ability that PCA has to 
handle missing data.  
 
This approach is the most realistic way of handling missing 
data because of the following: the ability that PCA has to 
handle missing data does not fill the blanks with any value, 
but it considers that value as non-existent; therefore, the score 
value is not biased with any projection about the future, like 
filling with zeros or with current deviation or with estimated 
values from an ARIMA model. This is fundamental, treat 
missing as missing, if we want to predict the future 
observations of a batch, we will require a mechanistic model 
in order to achieve enough robustness and reliability. 
 
A mechanistic model may take much time to build and, from 
a business perspective, can be very expensive. So, a rigorous 
solution to the problem is presented, according to the 
suggestions of Nomikos and MacGregor. 
 
The rigorous solution to this problem is to build as many 
models as time samples in the batch, this solution was not 
considered before because of the computational effort that it 
could mean in a real time application. With the actual 
computing power available, this not a problem any more. 
 
The model “n” will include time samples from 1 to “n” for all 
variables, so, when a new batch comes, one different model 
will be used each time a new sample comes, in this scheme 
there is absolutely no assumptions about the future values of 
the variables, because they are not considered at all in the 
model. 
 
The nylon data was used, and 100 models were built with the 
known 36 good batches, the rest of the batches were 
monitored using the 100 models in order to calculate the 
Hotelling T2 and the DModX for each time sample.  
 
In general, we could appreciate that the alarms given when 
the missing data ability from PCA was used, were very 
similar to the alarms given by the rigorous solution. These 
last ones kept the alarm state for more time (Fig 23-26). 
 
There is concern about the robustness of missing data ability 
of PCA monitoring scheme in the beginning of the batch, this 
particular study showed that it is robust enough. Building as 
many models as time samples does take a big effort and time, 
but for some cases it is worth the job. An online application 
with the rigorous solution is feasible thanks to the features 
and speed of some solutions available in the market, and of 
course, a hybrid solution always could be implemented. 

 
 

Fig. 23. Rigorous monitoring shows alarm for batch 49  
 

 
 

Fig. 24 Monitoring using missing data ability from PCA 
 shows alarm for batch 49. 

 

 
 

Fig.25 Rigorous monitoring shows faulty batches from the beginning 
 

 
 

Fig. 26 Monitoring using missing data ability from PCA 
 shows alarms for batches from the beginning 
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C. Data from a PVC process. 
 
This data set consists of 37 batches each one has a different 
duration, and 6 variables are sampled. This is a suspension 
polymerization process. The variables are: 
 
1. Temperature of cooling water at jacket outlet 
2. Temperature of cooling water at jacket inlet  
3. Cooling Water Flow rate thru the jacket 
4. Temperature inside the reactor 
5. Pressure inside the reactor 
6. Amperes used by the agitator system 
 
The first task is to align the batches to avoid the different 
length problem. The aligning was done using the percent 
completed of total time; the intermediate values were 
interpolated since each variable has a different sampling time. 
 
The first model, built with the raw data shows some 
clustering in the t1t2 space of BatchSPC (Fig. 27), while in 
the control charts for SIMCA-P there is no imminent 
clustering (Fig 28), from this point, SIMCA-P is no longer 
used for this particular study because it will not provide the 
necessary resolution to analyze the data set. 
 

 
Fig. 27. Clustering in BatchSPC 
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Fig 28. SIMCA-P Control Chart for the PVC raw data 

 

In this work, we have posed that a principal component is a 
reflection of the fundamental phenomena occurring in the 
batch, hence, to reinforce the data, one extra variable was 
included to account the total energy removed by the cooling 
system from the reactor, this will be variable #7. 
 
After including this new variable, the clustering in the data is 
even stronger (Fig. 29). According with the data owner, 
batches 1 to 9 are from the cold season of the year; the rest is 
from the warm season of the year. 

 

 
Fig.29 Clustering when energy balance is included 

 
The following to do is to look at the differences between the 
clusters in the contributions (Fig. 30) we can see that the 
difference between batches from cold season, and batches 
from warm season is the flow thru the jacket, and the total 
energy removed from the reactor, this is precisely what was 
expected from the model. 
 

 
 

Fig. 30 Heavy contribution from the water flow thru the jacket 
 

Once we know that the difference between clusters is 
something by nature in the system, we build a model for each 
set of batches, one PCA model for batches 1 to 9 and another 
one for batches 10 to 37 (Fig 31,32). 
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Fig. 31 PCA for cold season batches has two outliers, batch 7 and 9 
 

 
 

Fig. 32 T1 for warm season batches has three batches strongly different 
 
For each set of batches, the contributions helped to find out 
the specific variables driving the batch away from the 
expected.  
 
For batches 7 and 9, the control system had upsets in the 
water flow, for batches 13, 20 and 31 control upsets and 
different temperatures in the cooling water made them 
different from the rest. 
 

V. PLS USED TO INFERR BATCH PROPERTIES 
(SOFT SENSING) 

 
 
PLS can be used for inferential purposes, most polymer 
processes have to wait some time while the lab is giving the 
quality analysis of the product and, in some cases, the 
samples are not even taken batch to batch. In other batch 
processes, the products from several reactors go to a blending 
operation or into the same separation process (in order to 
recover solvents or non reacted raw material) so it is 
important to determine if the product from a certain batch is 
within the quality specs, to avoid it the spoilage of other 
products, and big economic impact. 
 

PLS gives the tool for building inferential models, and 
therefore we could predict in real-time the properties of 
certain batch, and decide if it is good product or not. It is 
important to say that a quality property cannot always be 
predicted with a mechanistic model. 
 
In this case we calculated the total reaction time for the 37 
batches from the PVC data set (recalling that all the batches 
had different time lengths). These times were used as a Y 
variable and a PLS model was built in order to predict the 
total batch time. 
 
Fig. 33 shows the results given by the model, the predictions 
are actually very good, and the worst prediction only differs 
in 3% from the observed total batch time. Using the raw data 
and the raw data with the extra energy variable improves the 
prediction in 4.98%, this is not significant because it means 
that the worst case improves only 36 seconds closer to the 
observed value (the difference between observed and 
predicted goes from 12.049 to 11.447), Fig 34 shows t1 vs. 
u1 for this model and a clear linear relationship can be 
observed. 
 

 
 

Fig. 33 Predicted vs. observed total batch times. 
 
Analyzing the loadings for this PLS model we see that the 
heavy variables are the pressure inside the reactor and the 
temperature of the cooling water into the system, these two 
variables account for the biggest variation of the data in Y, 
once again, statistic and deterministic approaches find a 
common space to be applied when interpreting the loadings 
of the model, the thermodynamic in the reactor are strongly 
correlated with the total reaction time, and this is why the 
PLS model is so good. 
 
Another study was done to see if the PLS prediction was 
maintained during the batch. Fig 35 shows the difference 
between the observed total batch time and the prediction 
during the batch (the missing data was handled as missing 
data in the PLS model) we can clearly see that the prediction 
is very bad with partial batch data, and since there is no 
fundamental reason for a partial batch to be correlated with 
the total batch duration, then we again obtain what we 
expected. 
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Fig. 34. t1 vs. u1 for the PLS model predicting total batch time. 
 

 
 

Fig. 35. Difference between observed and predicted along the batch duration 
 

 
VI. BUILDING A BUSSINESS CASE 

 
Any industrial analysis should have a business case attached, 
or an economic impact study. PCA and PLS gives us a 
powerful tool to analyze the opportunity operational cost of a 
certain process.  
 
When we build a PCA/PLS model around certain process 
data, the principal components will define the principal 
sources of variation, studying the contributions to the scores 
and depending on the nature of the process we can certainly 
calculate the economic impact of the process when it is 
located in certain regions of the score scatter plot. 
 
This is particularly useful when we deal with big processes 
where almost all the operations are correlated ones with 
others. PCA can be a powerful tool to find sources of 
economical variation (because of quality, because of 
operational costs, raw material quality, seasonal impacts, etc). 

 
For example, in the PVC data, the t1 t2 scatter plot shows 
seasonal clusters (Fig. 29) the contributions to the scores 
show that the main difference between clusters is the water 
flow thru the jacket.  
 
From here we can calculate the differences between clusters. 
The cold season batches use 3 m3 less of water per batch, 
from this point we could easily build a business case or an 
economic analysis. 
 

VII. CONCLUSIONS AND FUTURE WORK 
 

From this work we have learned that time wise is the most 
reasonable way of unfolding the 3D data matrix from 
industrial batch data. For monitoring new batches, using the 
ability that PCA has to handle missing data is the most 
realistic approach to solve this problem; implementing a 
rigorous solution, building as many models as time samples, 
gives the same alarms for batch upsets. 
 
A PLS model has to be supported and interpreted by 
fundamental laws and phenomena occurring in the batch. A 
well supported PLS model can be successfully used to predict 
batch/product properties. 
 
Last, the best model is not the one that captures 100% of the 
variance of a certain data set; the best model is the one that 
captures the relevant and fundamental variance of a certain 
data set. 
 
Future work in this area includes the implementation of a real 
time batch-aligning algorithm like DTW and the development 
of an adaptive scheme for batch MPCA/MPLS. 
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