
INCORPORATION OF EXTERNAL INFORMATION INTO MULTIVARIATE 
PCA/PLS MODELS 

 
 

Seongkyu Yoon1 and John F. MacGregor2 

 
 

Dept. Chemical Engineering, McMaster University, Hamilton Ontario Canada L8S 4L7 
1 yoons@mcmaster.ca 

2 macgreg@mcmaster.ca 
 
 
 
 

Most processes are subject to changes of the operating conditions such as feed rate and 
composition, product specification, controller status, and so on. These operating 
condition changes and the resulting process variations largely contribute to the 
common-cause variation. Sometimes the common-cause variation disguises or distorts 
the relevant information to faults. If the fault effects are correlated, or small compared to 
the operating condition changes, then the correlation model would be likely insensitive 
to the faults. This difficulty can be avoided by using a new correlation model that 
includes only the process variations relevant for the fault detection and isolation. The 
new model called a hybrid correlation model is estimated by incorporating prior 
knowledge within an empirical correlation model. Various approaches to incorporating 
different types of prior knowledge into the correlation models, and using them for 
process monitoring and fault diagnosis are presented in this study. The proposed method 
is used for analyzing a real industrial dataset. It is shown that the hybrid correlation 
model outperforms the regular correlation model in analyzing the process abnormality 
and increases the sensitivity for process monitoring. Copyright © 2001 IFAC 
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1. INTRODUCTION 
 
Multivariate statistical process control (MSPC) 
methods provide an alternative to the causal model-
based fault detection and isolation (FDI). Using the 
correlation models, one can summarize process 
variations with a few of principal components. Since 
the correlation models can be more easily estimated 
than the causal relationships, the multivariate 
statistical models have been popularly used for FDI 
of large or complex processes.  
 
Process operation data for building correlation 
models is collected when only common-cause 
variations are present. The common-cause variations 
include changes of the operating conditions such as 
feed conditions, product specification, controller 

status, and so on. When these operating conditions 
change, they affect many other variables and induce 
a lot of variation into the process data. These 
variations are usually described with a few relevant 
principal components. On the other hand, the 
correlation model that mainly explains the operating 
condition changes and the related variations is likely 
to be insensitive to faults. Especially when the faults 
are correlated, or small compared to these operating 
variations, the correlation model may lead to poor 
FDI. These difficulties can be avoided by using a 
preprocessed data in which the variations caused by 
the operating condition changes are removed. This 
data preprocessing can be done with prior knowledge 
of a process. 
 
In many cases, one may have partial/incomplete 



fundamental knowledge of the process even though 
complete fundamental models of a process are 
unavailable. These partially available process 
knowledge combined with the correlation models 
may be useful in interpreting questionable events 
occurring in processes (Yoon and MacGregor, 2000). 
If a given process has an undesired and disturbing 
influence and this process is characterized by one 
specific variable, the influence can be removed by 
data laundering through target rotation (Christie, 
1996). The data laundering removes unnecessary 
variations caused by the specific variable from the 
data matrix. On the other hand, one can incorporate 
the external information into the model rather than 
removing (Takane and Shibayama, 1991; Gurden et 
al, 2000). The key concept is the separation of 
sources of variation which brings greater clarification 
as to the role of the external information within the 
measured data. Nomikos and MacGregor (1994) 
simply augmented the observation matrix with the 
estimates of the total conversion and the 
instantaneous rate of energy release and obtained the 
MPCA model. They claimed that one can increase 
the information contents of the PCA model such that 
a special variation related with the key process 
parameter becomes a dominant contribution in the 
principal component. This approach enriches the data 
with prior knowledge. The key parameters used by 
Nomikos and MacGregor (1994), and Hodouin et al. 
(1993) are usually calculated from material or energy 
balance equations. Those equations also can be used 
for the generation of the residuals from which a PCA 
model is estimated. Tong and Crowe (1995) applied 
this idea to data reconciliation and proposed the 
principal component tests on the material balance 
residuals for identifying the variable in gross error. 
Wachs and Lewin (1998) similarly presented a model 
based PCA. They showed that the model based PCA 
could deal with parametric and structural uncertainty 
of the models. Therefore, a hybrid modeling 
approach which combines available process 
information with empirical correlation models would 
offer significant benefits, and make it possible to 
avoid, or minimize the limitations of the correlation 
models. 
 
This paper examines what kinds of external 
information can be used for the hybrid correlation 
modeling, how one can incorporate partially 
available prior knowledge into the correlation models, 
and how one can use the hybrid correlation models 
for process monitoring and fault diagnosis. As a 
unifying scheme of incorporating external 
information into correlation models an approach to 
hybrid correlation modeling is proposed. The focus is 
on integrating the available FDI resources under 
MSPC framework and maximizing the usage of the 
hybrid models for FDI. 

 
The outline of the paper is as follows. In section 2, 
various types of prior knowledge are discussed. In 
the following sections, three types of hybrid 

correlation methods are presented: the decomposition 
based method; the augmentation based method; the 
blocking and transformation based method. In 
addition, the hybrid model which combines 
theoretical and empirical relationships is discussed. 
In section 4, a real industrial data is analyzed using 
the proposed scheme. 
 
 

2. INCORPORATION OF PRIOR KNOWLEDGE 
 
A hybrid correlation modeling here is defined as a 
way of incorporating external information into the 
multivariate statistical correlation models. Using the 
hybrid correlation model for FDI is defined as hybrid 
FDI. Incorporation can be done in a way of either 
adding process knowledge into the correlation model, 
or removing unnecessary process variation from the 
correlation model. The external information available 
at different levels includes: 
 
• Prior knowledge on variables: disturbances, 

independent manipulated variables, and so on. 
• Additional information such as controller setpoint, 

mode, controller output and so on 
• Mass and energy balances that may be partially or 

fully known 
• Location, or frequency characteristics of process 

variations 
 
 

3. INCORPORATION OF PRIOR KNOWLEDGE 
INTO MULTIVARIATE CORRELATION MODELS 
 
3.1 Decomposition of X with row and column 

information 
 
Various types of external information can be 
represented in the form of either a column or a row 
for incorporation. Given the data matrix X (n×m), 
assume an n by p (≤ n) observation information 
matrix, G, and an m by q (≤ n) variable information 
matrix, H. For example, the q rows of H′ may 
represent q sets of material balance weights on the 
mass variables. A column vector in G may represent 
the observed values of a nuisance variable such as 
production rate which introduces a lot of extraneous 
variation into the variables in X (Fig. 1). Then the 
data matrix can be represented as follows (Takane 
and Shibayama, 1991): 
 
 X = GMH′ + BH′ + GC + E (1) 
 
where M(p×q), B(n×q), and C(p×m) are matrices of 
coefficients to be estimated, and E(n×m) a matrix of 
error components. The four terms in (1) explain the 
decomposed components of the original data matrix, 
X. The first term pertains to what can be explained 
by both G and H, the second term by H, the third 
term by G, and the fourth term by neither G nor H. 
The first three terms are explainable terms by 



external information and the last term is 
unexplainable. The estimates of M, B, and C are: 
 

 −− ′′′= )(ˆ HHXH(GG)GM   (2) 

 −′−= ))(ˆ HHXH(PIB G  (3) 

 )(ˆ
HPIXGG)G(C −′′= −  (4) 

 

where −′G)G(  and −′ )HH(  are g-inverses of G)G′(  

and )HH( ′ , respectively. GP  and HP  are orthogonal 

projection operators onto spaces spanned by the 
column vectors of G and H. They are calculated as 
follows: 
 

 GG)GGP ′′= −(G  (5) 

 HHHH(P ′′= −)H  (6) 

 
Using orthogonal complement projectors of GP  and 

HP , )( GG PIQ −=  and )( HH PIQ −= , the fourth 

term in (1) can be calculated as follows: 
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By substituting the least squares estimates for the 
corresponding parameters in (1), the data matrix, X, 
is decomposed as follows: 
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The four terms in (8) are the estimates of the 
corresponding four terms in (1). Note that some of 
the terms in (8) may be zero when G or H is a square 
matrix of full rank (e.g., G= I or H = I). 
 
Once the data matrix is decomposed according to the 
external information, principal component analysis 
may be applied to each component separately. In 
certain cases, some of the decomposed submatrices 
may be recombined for PCA. Since the components 
analyzed are associated with specific meanings of 
their own, PCA of the components may be more 
readily interpretable than direct PCA of the original 
data matrix. 
 
Prior knowledge in form of columns, X = PGX + 
QGX; When prior knowledge is available in form of 
column(s) G, H = I, PH = H(H′ H)−1H′ = I, QH = 0 
(zero matrix). Thus (8) becomes  

 
 X = PGX + QGX  (9) 

 
Where the first term represents the variation that can 
be explained by G, and the second term that cannot 
be explained by G. A PCA model can then be 

estimated with QGX rather than with the original data 
matrix. This PCA model excludes the variations 
causing from the nuisance variables expressed by G. 
This scheme generalizes the method of data 
laundering via target rotation (Cristie, 1995). The 
data laundering can be considered the case that the 
target variable column, y  is to be G in (8) and then 

Py = y(y′y)-1 y′. The data matrix is decomposed into 
the two terms as X = PyX + QyX. where PyX is just 
the least squares projection of the columns of X onto 

y, i.e., y ˆ . The laundered data, lX is nothing but 
QyX that is a projection of the data matrix onto the 
orthogonal complement of the space spanned by the 
target variable. Orthogonal signal correction (Wold et 
al., 1998) can be understood as the case that one uses 
the response variable(s), Y as a target matrix. Then X 
= PYX + QYX. One can remove the information in X 
that is not predictive of, i.e., orthogonal to Y. The 
remaining step is to build the PLS model with Y and 
PYX. 
 
Prior knowledge in form of rows, X = XPH + XQH; 
Here we assume certain row information on X, ie H, 
is available. Mass and energy balances belong to this 
type of information. Thus, G = I, PG = G(G′ G)−1G′ 
= I, QG = 0 (zero matrix). (8) becomes 

 
 X = XPH + XQH  (10) 

 
where the first term represents the variation that can 
be explained by H, and the second term that cannot 
be explained by H. 

 
The data reconciliation proposed by Tong and Crowe 
(1995) uses the mass balance equations, XB′ = 0, 
where B is r × m with r < m. The residuals of reduced 
constraints for a linear steady-state process are 
defined in the matrix form, R = XB′. PCA is 
estimated with the residual rather than the original 
observation matrix. Gross errors are identified with a 
principal component test. The principal component 
test for the data reconciliation can be interpreted 
differently with (8). Since the variable relationship, 

’BH =  is available, the observation matrix is 

decomposed: XPB + XQB where, BB(BBP −′′= )B . 
Then the process variations are decomposed into two 
sources of what can be explained and what cannot be 
explained by the balance equations. The first term, 
XPB will explain the process variations based on the 
steady-state and deterministic variable relationships. 
The PCA model of XPB may be used for the data 
reconciliation as used. The second term, XQH 
explains the process variations in which the 
deterministic variations are removed. 
 
Row and column information, When both G and H 
information are available, all the terms in (8) become 
relevant. It is noted that row information can be 
converted into a column, and vice versa. For example, 
the material balance over the variables can be 



represented as a residual and the calculated residual 
can be augmented into the observation matrix as a 
column, or used as G for the data decomposition. 
 
 
3.2. Incorporation of knowledge by augmentation of 

the X matrix 
 
When a material or energy balance is estimated based 
on a mechanistic model, the data matrix used for 
PCA or PLS models can be augmented with this 
estimated quantity as follows: 
 
 XAug = [ X | XC ] (11) 
 
Where, X and XC are the columns of the original data 
matrix and the estimated quantity, respectively. This 
augmented quantity enhances the diagnostic features 
of the multivariate statistical methods when faults 
occur at related sensors, or units. The same method 
can be used when a stochastic variable such as the 
heat exchanger fouling factor, or reaction impurity, is 
estimated from the available mechanistic models. 
The isolation of multiplicative faults can be 
simplified. One can not only overcome the difficulty 
in isolating multiplicative faults, but also minimize 
the necessity of process expertise in interpreting the 
contribution plots of the multiplicative faults. This is 
because the corresponding contribution of a more 
meaningful multiplicative parameter is highlighted 
instead of a group of measurements. 
 
 
3.3. Using knowledge on process structure and signal 

frequencies 
 
In very large processes involving many processing 
units with many variables in each unit, the number of 
potential errors or faults can be very large, making 
the diagnosis more difficult. Schemes for process 
monitoring using multivariate statistical projection 
methods such as PCA and PLS can be extended to 
situations where the processes can be naturally 
blocked into several subsections (MacGregor et al., 
1994). The main advantage of such blocking is to 
allow for easier interpretation of the data by looking 
at smaller meaningful blocks and the relationship 
between blocks. The choice of blocking depends 
upon engineering judgments. Similarly, one can 
decompose the process variations over several 
frequency (scale) ranges and estimate the PCA 
models of each block, or of all the blocks together 
(Bakshi, 1998). Knowledge of the frequency 
characteristics of the faults are very crucial for the 
implementation of the multiscale decomposition 
approaches. 
 
 

4. INDUSTRIAL APPLICATION 
 
In this section, a real industrial data is analyzed. 
Discussed are the issues on how to improve process 

monitoring and fault diagnosis while minimizing the 
effects of the disturbances by using some of the 
proposed methods. 
 
 
4.1 Process and fault description 
 
Dataset was collected from a styrene monomer 
production plant. The full scale SM unit consists of a 
dehydrogenation section with styrene, product 
recovery system and a distillation section in which 
benzene-toluene, ethylbenzene and tars are separated 
from the styrene. In this study, only the 
dehydrogenation section is considered; its brief 
process flow diagram is shown in figure 2. 
Ethylbenzene is dehydrogenated into styrene 
monomer in the presence of the iron oxide catalyst. 
This reaction is endothermic and the necessary heat 
is supplied by the addition of high temperature steam. 
The reactor produces about 70% of the crude SM and 
28 % of the unreacted EB with the condensing waters. 
The condensing water from the water/oil settling 
drum (WOSD) is stripped, and becomes fresh water 
for recycling use in steam boilers. 
 
Hourly average values of 105 process variables were 
collected for 4 months from 25 Nov. 1999 to 20 Mar. 
2000. The data includes normal and abnormal 
operations. The plant operation was shut down due to 
the malfunctions of the interface level indicator of 
the WOSD and the SM product pump at 9AM on Mar. 
20, 2000. The interface level of the WOSD had 
indicated approximately 1% lower value than the 
setpoint since 5AM on the same day. The feedback 
control of the level controller was kept on for 
approximately 4 hours without operator intervention 
and resulted in a complete closure of the water 
disposal valve. In the mean time, the viscous material 
that was considered polymer and existed between the 
water and SM phases was taken to the SM side of 
WOSD. This caused a trip of the SM product pump 
since the viscous material blocked the pump suction 
line. 
 
The malfunction of the water level sensor of WOSD 
was actually triggered by the accumulation of the 
viscous material within the level instrument. This 
viscous material is usually generated during the 
condensation of the reactor products at high 
temperature. It was understood that the viscous 
material could be monitored with the pressure 
difference between the reactor outlet and the recycle 
stream from the condenser stripper. However, the 
indicator of the pressure difference was not shown 
sensitive enough to detect the polymer accumulation 
due to the noisy characteristic of the pressure sensor 
and the disturbances. Accordingly, the operator 
intervention was not properly made at an early stage 
of the abnormal process operation. 
 
 
4.2 FDI using regular PCA model 



Among 105 variables, 52 key variables were selected 
for a postmortem analysis. With the original data, 18 
principal components were identified with cross-
validation as a stopping criterion and they explained 
97.6 % of the total process variations. However, 8 
principal components corresponding to those with 
eigenvalues are greater than 1 were used for the 
simplicity of the PCA model. They explained 88.1 % 
of the total variations. The first two principal 
components explain more than 55.0 % of the total 
variations. Figure 3(a) and (b) show the score plots of 
t1 vs. t2, and t3 vs. t4 for the training (1~2086) and 
testing (2087~2790) data. The training and testing 
data sets on the t1 vs. t2 scores space formulate 
several clusters. Interestingly, the dataset 
corresponding to the abnormal operation is found 
within the 99 % control region. On the other hand, 
the score plot of t3 vs. t4

 in figure 3(b) properly 
indicates the abnormality of the plant operation. 

Figure 4 shows the T2 and DModX plots. DModX 
plot indicates the deviation from the common cause 
variations around 2240 TS. It was found the levels of 
WOSD were mainly responsible for the abnormality 
at this time. The PCA monitoring plot exactly 
indicated the initial symptom of the catastrophic 
plant shutdown about one month in advance even 
though it was not reported by the plant personnel. 
Unfortunately, this plant was not equipped with plant 
monitoring system. 
 
However, the deviation of the level sensors from the 
common cause variations does not directly explain 
how it resulted in the malfunction of the level sensor 
of the WOSD water side (WOSDWLvl) 
approximately one month later. It is noted in figure 4 
that the T2 monitoring plot violated the 99 % control 
limit around 2410 TS. This corresponds to the data 
cluster outside of the control limit of the t3 vs. t4 
score plot in figure 3(b). The variable contributions 
to T2 at 2412 TS confirmed a group of variables being 
responsible for the T2 deviation at this time: the inlet 
temperature of the air fan cooler (AFCinTmp); the 
return line temperature from the stripper (STRrTmp); 
the bottom valve opening of the 1st separation drum 
(SD1WSVlv); the water side level of the W/O 
settling drum (WOSDWLvl). It was noted that the 
contribution of the ambient temperature (AMBTmp) 
was small. Thus, the variable contributions to T2 
provide an ambiguous clue to diagnosing the reason 
of the excessive variation on the hyper model plane. 
 
 
4.3 FDI using hybrid PCA model 
 
The effects of all the disturbances and their 
combinations were investigated before building the 
hybrid correlation model. The effects of the EB flow 
and the steam flow rates were considered the 
blocking factors that degrade the sensitivity of the 
correlation model. These two variables were set as 

the target variables (G) and their effects were 
regressed from the original data to leave QGX. 
 
With the laundered data, 17 principal components 
were identified with the cross-validation as a 
stopping criterion and they explained 97.6 % of the 
total process variations. However, 10 principal 
components corresponding to those with eigenvalues 
are greater than 1 were used for the simplicity of the 
PCA model. They explained 82.2 % of the total 
variation. Figure 3(c) and (d) show the score plots of 
t1 vs. t2, and t3 vs. t4 for training (1~2086) and testing 
(2087-2790) data. The testing data sets on the t1 vs. t2 
scores space clearly shows the abnormal operation. 
The dataset corresponding to the abnormal operation 
deviates from the 99 % control region. T2 and 
DModX monitoring charts based on the laundered 
data (QGX) provide essentially the same fault 
detection as shown by the regular PCA model in 
figure 4. However, the interpretation of the fault 
contribution was greatly enhanced. 
 
Figure 5 shows the variable contributions to T2 at 
2412 TS with the preprocessed data. It indicates a 
group of variables which were responsible for the T2 
deviation at this time. Especially, the contribution of 
the ambient temperature (AMBTmp) is shown to be 
significant. This effect was blocked by the first two 
principal components of the regular PCA model but 
is now shown clearly because the blocking factors 
were removed. A close analysis indicates that the 
sudden ambient temperature increase is highly 
correlated with the situation that forced the styrene 
monomer to polymerize. It is also noticed that the 
compressed air flow rates to the second and the third 
stage reactors had been large contributions. Even 
though the hydrogenation reaction is endothermic, 
the temperature increase caused by the increased air 
rates resulted in the increased reactor outlet 
temperature since the conversion rate is not 100 %. 
Consequently, the reactor outlet temperature at the 
last stage experienced an abrupt temperature increase. 
This temperature increase magnified the effect of the 
ambient temperature increase. By the combined 
effect, the polymer accumulation was accelerated. 
Information given in figure 5 is consistent with this 
analysis result. 
 
It is noted that there is potential improvement if one 
uses Wavelet filtering to remove unnecessary 
fluctuation caused by the ambient temperature while 
keeping the non-stationary part of the variation. 
 
 

5. CONCLUSION 
 
This research is to cope with practical situations in 
industries where the resources are partially available. 
Issues of dealing with external information for the 
correlation modeling have been addressed. Several 
existing methods were explained under the 
framework of the hybrid correlation modeling. Types 



of external information used for the correlation 
modeling were clarified. 
 
Using the orthogonal projections (or generalized LS) 
and external information, the observation matrix is 
decomposed into several terms. In general, it is 
decomposed into two terms: one including the effect 
of prior knowledge and the other term including the 
remaining effects. Depending upon the application, 
one can use any component of the decomposed terms. 
It was shown that various types of prior knowledge 
could be used to better interpret correlation models 
and achieve better performance. However, one needs 
to be cautious in using the prior knowledge for 
correlation modeling. It has to be confirmed that the 
target variables would be clearly unnecessary process 
variations for monitoring.  
 
The hybrid correlation modeling and FDI have been 
assessed with the industrial dataset. It was shown that 
the proposed method provided better results when the 
available prior knowledge was properly used. 
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Fig. 1. Row and column information 
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Fig. 2. Dehydrogenation of SM plant,  
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Fig. 3. Score plots; (a) t1 vs. t2 of regular PCA model; (b) 

t3 vs. t4 of regular PCA model; (c) t1 vs. t2 of hybrid 
PCA model; (d) t3 vs. t4 of hybrid PCA model 
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Fig. 4. Monitoring plots; (a) Regular PCA; (b) PCA 
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Fig. 5. Variable contribution plots 


