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Process signals represent the cumulative effects of many underlying process 
phenomena. Multiresolution analysis is used to decompose the cumulative process 
effects. The decomposed process measurements are rearranged according to their scales, 
and PCA is applied to these multiscale data to capture process variable correlations 
occurring at different scales. Choosing an orthonormal mother wavelet allows each 
principal component to be a function of the process variables at only one scale level. 
The proposed method can identify when a multiscale approach is needed. The 
conventional PCA as well as MSPCA models are shown as the limiting cases of the 
proposed model. A procedure for both fault detection and isolation is presented. The 
proposed method is discussed and illustrated in detail using simulated data from a 
CSTR system. A comparison study is done through Monte Carlo simulation. The 
proposed method significantly enhances FDI performance by using additional scale 
information. Copyright © 2001 IFAC 
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1. INTRODUCTION 
 

 
Process measurement signals usually represent the 
cumulative effects of many underlying process 
phenomena such as process dynamics, measurement 
noise, external disturbances, process degradation etc. 
Each effect manifests on a different scale that is a 
reciprocal of frequency. Faults occurring at different 
locations, times and frequencies are considered one 
of the contributing events. In case of a complex fault, 
its signature is very likely to be confused with 
multiscale nature of the process signals since the 
effect of the complex fault is propagated into other 
measurements through process dynamics and control 
actions. 
 
One can decompose process signals such that all the 
contributing events are approximately discriminated 

according to their scale contents and a fault is 
distinguished from other events. The decomposition 
is done with the multiresolution analysis via wavelet 
transformation which characterizes signal in the 
domain of time and scale (Mallat, 1989; Daubechies, 
1990). Recently, multiscale PCA (MSPCA) has been 
formulated (Bakshi, 1998). By the MSPCA, one 
simultaneously extracts process correlations across 
data and accounts for auto-correlation within sensor 
data. This involves the decomposition of variables on 
a selected family of wavelets and the development of 
separate PCA models at each scale. The models at 
important scales are then combined in an efficient 
scale-recursive manner to yield a model for those 
scales of interest. The MSPCA formulation makes it 
suitable to work with process signals having a 
multiscale nature. Fault detection has been 
demonstrated with the MSPCA concept, but fault 
isolation has not been dealt with. 



  

 

This paper presents an indirect usage of the process 
dynamics for FDI. A unified framework that 
generalizes MSPCA as well as PCA is proposed. An 
FDI procedure using the proposed method is 
presented. The proposed method is illustrated using a 
simulated data from a CSTR system with feedback 
control. The FDI performance of the proposed 
method is assessed through Monte Carlo simulation. 
 
 

2. DECOMPOSITION OF A FINITE SIGNAL 
 
The decomposition of signals according to their scale 
contents can be implemented with multi-channel 
filter banks built by cascading two-channel banks. 
Since a two-channel filter bank splits a signal into a 
lowpass version, and a highpass version, this 
decomposition is recursively applied on the lowpass 
version (Vetteri and Kovacevic, 1995). This leads a 
hierachy of multiresolution decomposition. In 
practice, the only data that can be processed by an 
algorithm are discrete. In the discrete version of the 
multiresolution analysis, it is assumed that the initial 
data already represents an approximation at a certain 
scale that is related to the sampling interval. By 
convention, this scale is fixed at j=0. This is the 
finest resolution, associated with the space V0. Then, 
a finite number of decomposition steps J leads to a 
coarsest resolution associated with VJ. The input is 
decomposed into a very coarse resolution which 
exists in VJ and added details which exist in the 
spaces Wj, j = 1 ,…, J, , where VJ’s are called 
approximation spaces and Wj’s detail spaces. 
 
The action of a two channel analysis filter on an 
infinite signal column vector x is represented by 
using the analysis filter matrix, Fa

T=[H1
T H0

T]T where 
Hi has the effect of filtering the signal by H0(z) and 
subsampling by 2 (represented by the shift by 2 in 
H0) where i=1 for a high pass and i=1  for a low pass 
filter. The projections on the low-pass component are 
recursively decomposed to obtain coarser 
approximations. The projections on the high-pass 
component (wavelets at each scale) contain the finer 
details. Thus,  
 
 xa

(j) = H0xa
(j-1) and xd

(j) = H1xa
(j-1) (1) 

 
where, xa

(j)and xd
(j) are row vectors whose lengths are 

n/2j where n is a signal length. Assuming n is 
relatively large number, and the transformation 
matrix, Wa is expressed as 
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where H1
(j) is the matrix containing wavelet filter 

coefficients corresponding to scale j and H0
(J) is the 

matrix of scaling function filter coefficients at the 
coarsest scale. After J decompositions, the 
transformation of x, or xa

(0) is expressed in terms of 
xa

(j) and xa
(d); 
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Thus, Wax is the same size as the original data 
sequence, but due to the wavelet decomposition, the 
deterministic component at lowest frequency is 
concentrated in a relatively small number of 
coefficients in xa

(J) , while the stochastic component 
in each variable is approximately decorrelated and is 
spread over all components in xa

(d), j = 1, …, J, 
according to its power spectrum. 
 
Similarly, the synthesis filter matrix, FS

T=[G1
T G0

T]T 
can be represented with its high pass and low pass 
components matrices, G1 and G0. Based on it, the 
transformation matrix for the reconstruction WS is 
obtained. Therefore, the reconstructed signal is 
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The filter bank necessarily operates over infinite 
signals (the matrix is infinite along both dimensions) 
and the filters do not change with time. The 
application to finite lengths will generally involve 
either distortion at the boundary or the introduction 
of some redundancy. If a finite unitary matrix has the 
same block structure as the infinite unitary matrix T, 
one can get a square unitary matrix for any size for a 
given filter set. It was shown how this problem could 
be overcome in the case of two-channel orthogonal 
filter banks by using boundary filters (Herley, 1995). 
 
 

3. PCA OF MULTISCALE DATA 
 
As a data sequence is transformed and expressed in 
terms of its contributions at different scales, the same 
transformation can be applied to all the measurement 
data. Let X be the observation matrix of dimension, 

mn × . All the columns of X can be decomposed into 
the details at all levels and the approximation at the 
coarsest level.  
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where each term represents scale contribution of the 
original data matrix. All the terms have the same 
number of rows and columns. One can characterize 
the original data by three parameters of variable(m), 
sample time(n), and scale(J). It is splitting all the 
scale contributions and laying the terms side by side 
to produce a two-dimensional matrix XG of size 

])1([ mJn +× (Fig. 1). The XG is defined  

 
 XG = VDiag(X)J+1 (6) 
 

where V  is the rearranged transformation matrix 
and Diag(X)J+1 is a diagonal matrix whose diagonal 
component is X and off-diagonal terms are zero 
matrices with the same dimension as X. Its 
dimension becomes [(J+1)n, (J+1)m]. Once we 
choose an orthogonal mother wavelet, G0 = H0

*, G1 = 
H1

*, then G0
(J) = (H0

(J))T, G1
(j) = (H1

(j))T. V is 
simplified in term of the analysis filter matrices. PCA 
model of multiscale data is obtained by applying 
PCA on XG. Alternatively, one can obtain the GPCA 
model by ordering the principal components of all 
the scale blocks as follows; 
 
• Perform regular PCA on Xj using PCA algorithm 

to obtain Pj and eigenvalues, λ j which contain all 
the eigenvalues of each sale block. 

 
• According to the eigenvalues magnitudes, arrange 

all the corresponding loadings. 
 
• Obtain the loadings of GPCA model with the 

arranged block loadings. For example, when the 
largest eigenvalue is the largest one from j  scale 

block, then the first GPCA loadings is; 
 














=

−+−
��� ���� ��

�
��� ���� ��

�

mjJ

T
jb

mj

T
G mmmm

)1(

,

)1(

1, ),1(),1(),1(),1( 00P00P

 
Then, the second loading of GPCA model is 
obtained by selecting the loading related with the 
largest eigenvalue among the remaining 

eigenvalues except for the one used in the 
previous step. 
 

• The scores can be obtained in two ways: One can 
use the block score according to the loading 
selected, or use XG and the GPCA loadings PG,1; 
TG,1 = XGPG,1 

 
• Deflate residuals; EG = XG - TG,1PG,1

T 
 
• Return to step 2 and repeat the procedure until one 

obtains all the GPCA loadings with all block 
loadings. 

 
One may capture the correlations among process 
variables as well as among scales. Due to the usage 
of an orthogonal mother wavelet, the PCA model 
inherits a few useful properties from the wavelet 
orthonormality and the related filter features. 
 
Discrimination of process variations: Due to the 
orthogonality between scale blocks, the off-diagonal 
terms of XG

TXG have all zero values. The covariance 
matrix of XG

TXG becomes a block diagonal matrix. 
Therefore, there will be no interactions between 
blocks, and the principal component will be a 
function of variables within only a scale block. 
 
Generalization of PCA and MSPCA: The diagonal 
terms of XG

TXG have non-zero values. Their block 
diagonal terms of XG

TXG are the same as those of 
individual blocks in MSPCA, and the sum of the 
block diagonal terms becomes an identity matrix. 
When one considers the zero level of decomposition, 
GPCA becomes PCA. MSPCA is a special case of 
GPCA without the information on the percents of 
process variations explained by the principal 
components. Thus the GPCA model unifies PCA as 
well as MSPCA. 
 
Clustering of multiscale data:  When all the scale 
characteristics of dominant events in a process may 
not be shown in the orders of 2jTS, but unevenly 
spaced from lower to higher scale, one may not need 
to investigate all the decomposed scales. One then 
can cluster the several scales at which the similar 
correlations are shown. This will significantly reduce 
the number of scales to be analyzed and simplify the 
multiscale analysis. 
 
Detrending: Once a multiscale data based PCA 
model has been built, one can identify a scale or a 
principal component which is not needed for process 
monitoring. One may further identify a useless 
process variation at the identified scale. One can then 
remove one or all the principal components within 
the suspected scale. Removing all the principal 
components within the scale is equal to a bandwidth 
filter. When a scale includes both the useful and 
useless process variations, the GPCA based modeling 
method provides enhanced flexibility in handling the 
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Fig. 1. Generation of multiscale data 



  

 

useless process variation for the process monitoring 
and obtaining a sensitive monitoring model. 
 
 

4. FAULT DETECTION AND ISOLATION 
 
With the notion of GPCA, one has additional 
information that is a scale contribution for fault 
analysis. One can estimate how much each scale 
contributes to a fault in terms of Hotelling’s T2. The 
overall T2 can be partitioned into a contribution from 
each scale as follows: 
 

 ∑
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, kip  is k -th 

variable weight in i -th latent variable, m  is number 
of variables, and J  is the number of scales. Once the 
contributing scale for a fault is identified, one can 
look at the individual variable contributions to the 
contributing scale. It can be expressed as follows: 
 

 kmjkmjGjk wx +−+−= )1(
2

)1(,
2T . (8) 

 
The above equation is the scale variable contribution 
to T2 relative to zero. The expression for contribution 
to a change in T2 over some time interval is: 
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Similar expressions can be obtained for the scale 
contribution to the overall SPE given by, 
 

 ( )∑
=

+−+− −=
m

i
imjGimjGj xx

1

2
)1(,)1(, ˆSPE  (9) 

 

where kGk
T
AAkG xx ,, )(ˆ ⋅= PP  and the j-th variable 

contribution to the SPE at that scale jkSPE  is  

 

 ( )2)1(,)1(, ˆSPE kmjGkmjGjk xx +−+− −=  (10) 

 

Therefore, after a fault is detected by the SPE or T2, 
one can inspect the scale contributions to the SPE or 
T2, and then the variable contributions to the 
contributing scales. Having identified the important 
scales and the variable contributions to these scales, 
one may isolate a fault with high accuracy. Figure 2 
outlines the FDI procedure based on the GPCA 
model. 
 
 

5. SIMULATION STUDY 
 
A nonisothermal continuous stirred-tank reactor 
(CSTR) model (Marlin, 1995, page 90-92) is used for 
a case study (Fig. 3). The reaction is 1st order (A�B) 
and the reactor system involves heat transfer through 
cooling coils to remove the heat of reaction. The 
process has two feed streams (the solvent and the 
reactant A), one product stream, and a cooling water 
flow to the coils. The reactant (FA) and the cooling 
water (FC) flows control the reactor outlet 
concentration (CA) and temperature (T), respectively. 
However, in this application only the temperature 
controller is active. Measured process disturbances 
are the inlet concentrations (CAS, CAA), the inlet 
temperature (TO), the solvent flow (FS), and the 
cooling water temperature (TC). All of these 
disturbances are simulated to have first order 
autoregressive variations under both normal and fault 
conditions. In addition, unmeasured stochastic 
disturbances are also simulated as first order 
autoregressive behaviors in the reaction rate (k) and 
heat transfer (UA) constants respectively. A negative 
correlation between FS and CAS is added. In all 
studies, the training data was collected for 200 
minutes from the process under routine operation 
when no faults were present. The data collection 
interval ST  was 10 seconds. 

 
 
5.1 Comparisons to PCA and MSPCA 
 
The collected data was decomposed into 4 detail and 
one approximation blocks corresponding to 2TS, 4TS, 
8TS, 16TS, and the frequencies lower than 16TS. 
Deubechies-5 wavelet was used as a mother wavelet 
to generate the multiscale data. Then, PCA and 
MSPCA/GPCA models were calculated with the 
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Fig. 2. GPCA model based FDI procedure 
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Fig. 3. Process flow diagram of CSTR system 



  

 

single-scale and multiscale data, respectively. Figure 
4 shows principal component loadings of the three 
models. Each cell represents the effects of all 9 
variables- CA, T, CAS, CAA, FS, FA, TO, TC, and FC, 
respectively. 
 
The PCA model consists of 3 principal components. 
The first principal component explains the control 
action. It shows that the cooling water flow (FC), the 
reactor outlet concentration (CA) and the reactor 
outlet temperature (T) are positively correlated. The 
second shows a negative correlation between the 
solvent flow (FS) and the solvent concentration (CAS). 
The third one seems to be a combination of several 
effects. The PCA model reasonably describes the 
relevant process correlations of the CSTR system. 
 
Since the single-scale data was diadyically 
decomposed into 5 blocks of 4 details and 1 
approximation, MSPCA model consists of PCA 
models of the 5 scale blocks. From left to right in the 
bottom of figure 4, each column corresponds to the 
PCA model of the decomposed block of 2TS, 4TS, 
8TS, 16TS, and the lower frequencies than 16TS. The 
PCA models at all 5 scales show almost the same 
behavior as that of the single-scale PCA model. This 
means that the same process correlations existed over 
all scales.  
 
GPCA model consists of 15 principal components 
since there are 5 decomposed blocks and each block 
has 3 principal components. Each principal 
component of the GPCA model is expressed with 45 
variables. It results from the fact that there are 5 
decomposed blocks and each block is described with 
9 process variables. However, the principal 
components of GPCA model are actually described 
with 9 variables at only one scale due to 
orthogonality among scale blocks. In the GPCA 
model of figure 4, it is shown the 1st principal 
component is the function of variables at 4th 
approximation block and describes a positive 
correlation among the cooling water flow, the reactor 
outlet concentration, and the reactor outlet 
temperature. This correlation is based on the control 
action at the bandwidth beyond 16 TS. The effect of 
the feedback control is most strongly shown at the 
frequency band lower than 16TS. Similarly, the 
second principal component indicates the similar 
correlation among the process variables at the 
frequency band of 8 ST . Information on the scale 

contents of the process correlations over the 
examined frequency bands is available only with the 
GPCA model. 
 
The process correlations shown at different scales 
with GPCA model are almost the same as those 
shown by the regular PCA model. The first 5 
principal components of the GPCA model are very 
similar to the first principal component of the regular 
PCA model. The 6th ~10th principal components of 

the GPCA model in figure 4 appear correspondingly 
to the second principal component of the regular 
PCA model. Thus, one may not need to apply 
multiscale analysis. In this case, PCA becomes a very 
effective data analysis tool. With the GPCA model, 
one can judge if a multiscale analysis is needed. 
 
 
5.2 Comparisons on FDI performance 
 
Unstable contact or an old instrument can cause an 
excessive oscillatory action on the measurement 
while its real value remains unchanged. The inlet 
temperature (TO) in the CSTR model is assumed to 
show this behavior (Fig. 5(a)). The fault effect is not 
propagated into the other variables and is restricted to 
one frequency band. It indicates that the precision 
degradation of TO sensor has a single-scale effect. To 
examine the FDI performance on this fault, 500 sets 
of training and testing data were generated with 
random seeds and at each value of various FSRs 
(ratio of fault magnitude to square root of a signal 
variance). With each data set, the type I and type II 
errors, and the average run lengths (ARL) for fault 
detection and isolation were calculated. The Type I 
error of MSPCA is based on the threshold value 
adjusted with the Bonferroni rule. Figure 6(a) and (b) 
show the fault detection and the isolation ARLs for 
PCA, MSPCA and GPCA at various magnitudes of 
the fault. The isolation ARL was calculated with the 
variable contributions assuming that the fault is 
detected and identified. The GPCA/MSPCA 
outperforms the regular PCA. This is due to the 
characteristic of the precision degradation whose 
effect is not spread over wide frequency ranges. 
 
As a second case, a sensor bias of the inlet 
temperature measurement (TO) is simulated (Fig. 
5(b)). All the other conditions are the same as the 
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above case. Figure 7(a) and 7(b) show the fault 
detection and the isolation ARLs for the sensor bias. 
The detection and isolation ARLs of GPCA/MSPCA 
show almost the same results as that of the regular 
PCA. This is due to the characteristic of the sensor 
bias whose effect is spread over wide frequency 
ranges. The simulation result confirms that the 
multiscale model does not significantly outperform 
the regular PCA in such a case. 
 
 

6. CONCLUSION 
 
In this study, GPCA that is PCA of the multiscale 
data has been proposed as a modeling method for 
data showing multiscale features. When process 
signals represent the cumulative effects of many 
underlying process phenomena and each of them 
manifests on a different scale, one can explicitly 
decompose those process effects over scale levels, 
and capture the process correlation among variables 
and scales. GPCA shows what scale ranges should be 
monitored since it gives scale information of 
significant process correlation. It also enables one to 
remove unnecessary effects of process events from 
further analysis, or to cluster several scale blocks 
showing similar correlation to efficiently summarize 
the multiscale process correlations. One can also 
confirm if the multiscale analysis is needed. 
 
The proposed scheme unifies the existing methods 
since PCA and MSPCA are limiting cases of GPCA. 
GPCA thus not only conveys all the information 
contents shown in both MSPCA and PCA, but also 
reveals the relative significance of all the principal 
components over scales, which is unavailable with 
MSPCA. Based on the proposed method, a procedure 
for both fault detection and isolation using the GPCA 
model has been presented. Contributions of the 
various scales to the overall T2 and SPE, and 
contributions of the variables to each scale have been 
proposed as additional tools for fault isolation. Due 
to the usage of scale information, FDI performance 
can be significantly enhanced. 
 
FDI performance has been assessed through Monte 
Carlo simulation with the CSTR system. When a 
fault occurs in only one frequency band, multiscale 
methods will be more effective than the regular 
methods in detecting and isolating faults. However, it 
is questionable if the multiscale methods would result 
in better performance when the fault effect is spread 
over more than one frequency band. Thus, a 
monitoring method that gives the best detection and 
isolation of faults will depend upon the fault 
characteristics. 
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Fig. 5. Simulated faults on TO sensor; (a) Precision 

degradation; (b) Sensor bias (Fault at 51 min 
during [0 100]) 
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Fig. 6. FDI w.r.t. the precision degradation of TO 

sensor; (a) detection ARL; (b) isolation ARL 
(99% CL) 
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Fig. 7. FDI w.r.t. TO sensor bias; (a) detection ARL; 
(b) isolation ARL (99% CL) 


