Molecular Simulations (2): Application Issues

(Myung-Suk Chun), KIST

January 2002

Conformation Space Sampling Techniques

Equation of Motion

$$M \frac{\partial^2 X(t)}{\partial t^2} = -\nabla E(X(t)), \qquad \frac{\partial X(t)}{\partial t}(t) = V(t)$$

 ∇E : the collective gradient vector of the potential energy E

M: diagonal mass matrix

X,V: position and velocity vectors

Stochastic Molecular Dynamics

Langevin Dynamics

$$m\ddot{x}_{i} = -\nabla_{i}U + \boxed{R_{i}} + \gamma\dot{x}$$

$$\langle R_{i}(t)\rangle = 0 \quad \langle R_{i}(t)\cdot R_{i}(t')\rangle = 2mkT\gamma\delta(t-t') \quad \gamma = kT/mD$$

Langevin Eqn: Frictional and Random-force terms are added to mimic molecular collisions

$$M \frac{\partial^2 X(t)}{\partial t^2} = -\nabla E(X(t)) - gMV(t) + R(t), \quad \frac{\partial X(t)}{\partial t}(t) = V(t)$$

$$\langle R(t) \rangle = 0, \quad \langle R(t)R(t')^T \rangle = 2gk_BTMd(t-t')$$

Colored Noise Dynamics

$$m\ddot{x}_{i} = -\nabla_{i}U + \boxed{R_{i}} - \gamma\dot{x}$$

$$\langle R_{i}(t)\rangle = 0 \qquad \langle R_{i}(t) \cdot R_{i}(t')\rangle = f(\gamma)e^{-|t-t'|/\tau}$$

Colored Noise Forces decay

exponentially in time so they "push" on the atoms longer.

✓ Interatomic Forces

Stochastic Forces

Damping Forces

Colored Noise Samples Wider Regions of Phase Space P. Hanggi, Journal of Statistical Physics, v. 54, p.1367 (1989)

Protracted Colored Noise Dynamics

Equations of Motion:

$$m\ddot{x}_{i} = -\nabla_{i}U + R_{i} - \gamma\dot{x}$$

$$\dot{\gamma} = \frac{1}{Q} \left(\frac{T_{System}}{T_{Bath}} - 1\right)$$
Nosé-Hoover thermostat constrains temperature

Decoupling of the damping term and random noise allows for large fluctuations, but violates the Fluctuation Dissipation Theorem (FDT).

• Colored Stochastic Force:

$$\langle R_i(t) \rangle = 0$$
 $\{\langle R_i(t) \cdot R_i(t') \rangle\} = \frac{\Omega}{\tau} e^{-|t-t'|/\tau}$

Simulation of Shear Behavior for Polymers

- A confined shear cell simulation of Fe - PE -Fe
- The Layer builder is used to construct the cell.
- Applications include lubrication, and microdevice fabrication

Rheology of confined polymeric liquids

- Discover dynamics simulations and analysis
- Relevant factors are
 - chain length and topology
 - fluid-wall and fluid-fluid interactions
- Atomistically defined walls
- Pianar Couette flow:
- Maintain wall atoms at constant T (NVT)
- Fluid at constant energy (NVE)
- Properties: density, velocity and temperature profiles, stress

Mesoscale Simulations - focus areas

Mesoscale chemical engineering

Nanotechnology

Biomedical materials and devices

Mesoscale Modelling Tools

MesoDyn: Mesoscale Dynamics of Polymer Ensembles

DPD: Dissipative Particle Dynamics

Pluronic L64 structures as a function of concentration in aqueous solution:

- Predicted mesosphases:
 - (a) (70%) lamellar
 - (b) (60%) bicontinuous
 - (c) (55%) hexagonal
 - (d) (50%) micellar
- Excellent agreement with experiments.
- Same parameters also give correct predictions for other Pluronics.

B.A.C.van Vlimmeren, N.M.Maurits, A.V.Zvelindovsky, Pluronics. G.J.A.Sevink and J.G.E.M.Fraaije 1999 Macromolecules 32: 646-656