
Statistical Process Monitoring with Independent Component Analysis

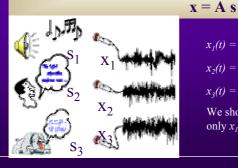
> ChangKyoo Yoo BIOMATH, University Gent, Belgium

Jong-Min Lee, and In-Beum Lee Department of Chemical Engineering Pohang University of Science and Technology

Presentation Outline

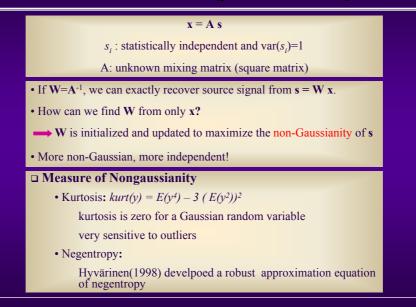
- Conventional Monitoring Method
- Motivation
- □ Theory and algorithm of ICA
- Statistical process monitoring procedure with ICA
- □ Case Study: wastewater treatment plant data
- Conclusion

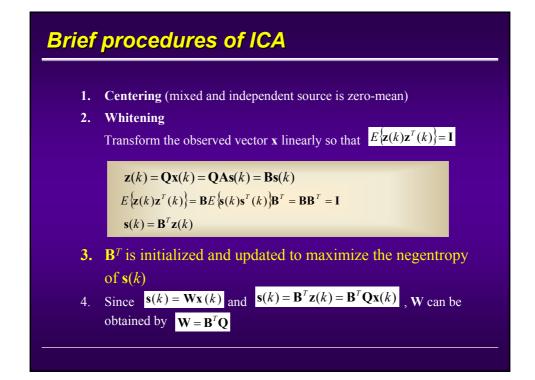
Conventional Monitoring Methods



- Can handle high dimensional, noisy and correlated data by projecting the original data onto a lower dimensional subspace
- > Use of <u>in-control</u> (normal) runs in the <u>historical</u> database
- Development of the statistical model that characterizes normal operation (NOC)
- Computation of control chart limits for use in monitoring future samples
 - ✓ Hotelling T² chart, Squared prediction error(SPE) chart
- Not appropriate for non-stationary, dynamic, or non-Gaussian data _____

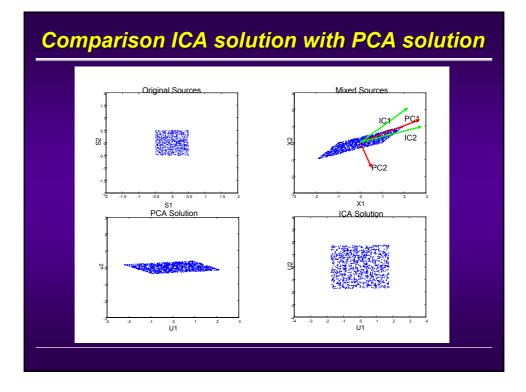
ICA


The Concept of Independent Component Analysis


• Independent component analysis (ICA) is a statistical method, the goal of which is to decompose the multivariate data **x** into a linear sum of statistically independent components, i.e.

 $\begin{aligned} x_{1}(t) &= a_{11}s_{1}(t) + a_{12}s_{2}(t) + a_{13}s_{3}(t) \\ x_{2}(t) &= a_{21}s_{1}(t) + a_{22}s_{2}(t) + a_{23}s_{3}(t) \\ x_{3}(t) &= a_{31}s_{1}(t) + a_{32}s_{2}(t) + a_{33}s_{3}(t) \\ \text{We should find } a_{ij}, s_{1}(t), s_{2}(t) \text{ and } s_{3}(t) \text{ from only } x_{1}(t), x_{2}(t) \text{ and } x_{3}(t) \end{aligned}$

How can we find source signals from only x?


Comparison between PCA and ICA

PCA

- 1. Second-order method (mean, variance)
- 2. Using only the information contained in the covariance matrix of the data vector x
- 3. Assume Gaussianity of x
- 4. Computationally simple

ICA

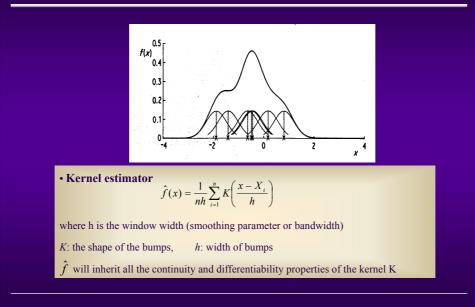
- 1. Higher-order method (mean,variance, skewness,kurtosis, etc)
- 2. Use information on the distribution of x that is not contained in the covariance matrix
- 3. Assume non-Gaussianity of x
- 4. More sophisticated techniques

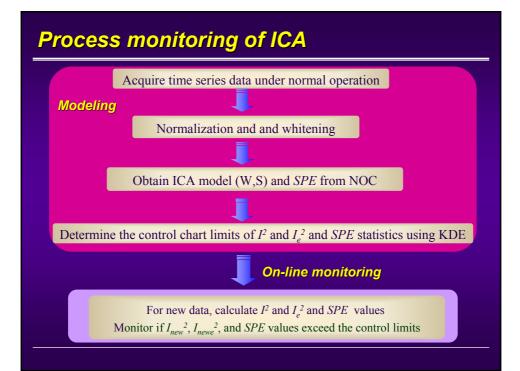
New monitoring procedures (Modeling Part I)1. Mean centering and variance saling2. Whitening procedure: $Z_{normal} = QX_{normal}$ 3. ICA procedureObtain W, B, and S_{normal} from $S_{normal} = WX_{normal} = B^T Z_{normal}$ 3. Calculate the norm of the row vectors of W and separate W into the deterministic part and the excluded part based on the magnitude of norms. B and S_{normal} can be separated with the same criterion. $W \rightarrow W_d, W_e$ $B \rightarrow B_d, B_e$ $S_{normal} \leftarrow S_d = WdX_{normal}$ $S_e = WeX_{normal}$

Contribution for fault identification

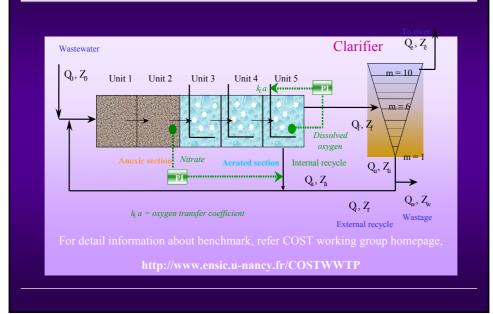
□ Variable contribution to $I_{new}^2(k)$

$$\mathbf{x}_{cd}(k) = \frac{\mathbf{Q}^{-1}\mathbf{B}_{d}\mathbf{s}_{newd}(k)}{\left\|\mathbf{Q}^{-1}\mathbf{B}_{d}\mathbf{s}_{newd}(k)\right\|} \left\|\mathbf{s}_{newd}(k)\right\|$$

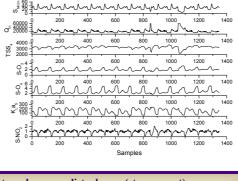

 \Box Variable contribution to $I_{newe}^2(k)$


$$\mathbf{x}_{ce}(k) = \frac{\mathbf{Q}^{-1}\mathbf{B}_{e}\mathbf{s}_{newe}(k)}{\left\|\mathbf{Q}^{-1}\mathbf{B}_{e}\mathbf{s}_{newe}(k)\right\|} \left\|\mathbf{s}_{newe}(k)\right\|$$

 \Box Variable contribution to *SPE*(*k*)


$$\mathbf{x}_{cspe}(k) = \mathbf{x}(k) - \hat{\mathbf{x}}(k)$$

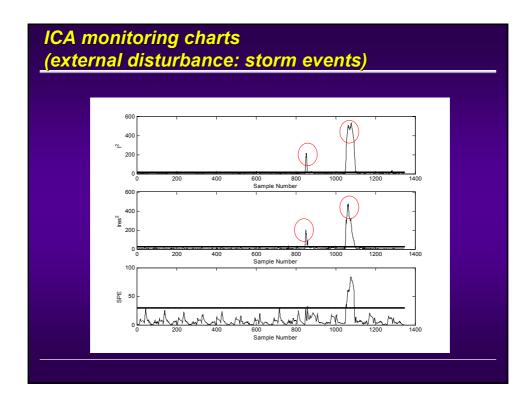
Kernel density estimation (KDE)



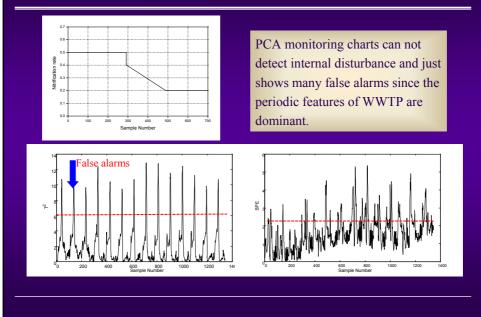
Case Study: simulation benchmark

Variables used in the monitoring and disturbance type

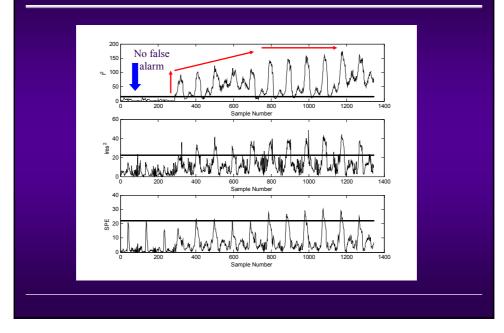
No.	Symbol	Meaning
1	S _{NHin}	Influent ammoniac concentration
2	Q_{in}	Influent flow rate
3	TSS ₄	Total suspended solid (reactor 4)
4	<i>S-0</i> ₃	Dissolved oxygen concentration (reactor 3)
5	S-04	Dissolved oxygen concentration (reactor 4)
6	$K_L a_5$	Oxygen transfer coefficient (reactor 5)
7	S-NO ₂	Nitrate concentration (reactor 2)

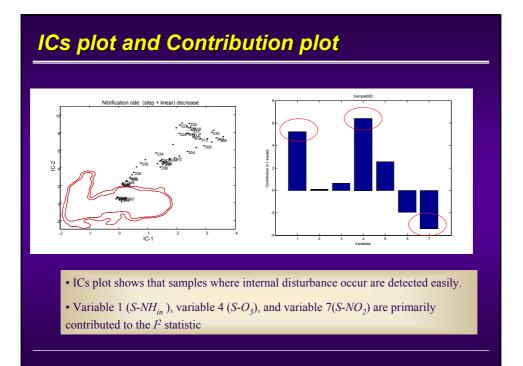

Disturbance type

External process disturbance (storm event)


High flow rate, low ammonia conc. in influent load

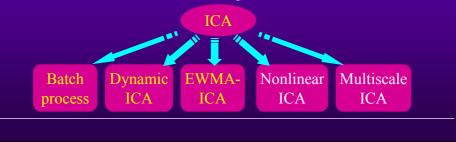
Internal disturbance


Nitrification rate decrease in the aeration basin



PCA monitoring charts (internal disturbance)

ICA monitoring charts (internal disturbance)



Conclusion

Higher order decorrelation method Can find underlying factors from multivariate statistical data

- 2. ICA monitoring can give better performances rather than PCA monitoring to detect internal disturbance
- 3. Extension of ICA monitoring

