COPPER-PLATED STAINLESS STEEL FOR BIPOLAR PLATES IN DIRECT-OXIDATION SOFC

INTRODUCTION

Direct oxidation of dry hydrocarbon in SOFC

CeO₂, Cu catalyst in anode
700°C

➤Gas-tight seals for an SOFC with a Cubased anode in a stainless-steel bipolar plate

Carbon formation is prevented when the steel is electroplated with a thin Cu film.

Basic study for large scale stack and multi-stacking

SOFCs can theoretically operate on hydrocarbon fuels

Experiment

- Double casting and calcined at 1550°C for;
 - Porous Anode:
 - $2.5 \times 2.5 \text{ cm}^2$, 600 μ m
 - 10 wt% Ceria, 20wt% Cu as catalyst
 - Poreformer : PMMA, Graphite
 - electrolyte: 90 μm
- Cathode: LSM (La_{0.8}Sr_{0.2}MnO₃) + YSZ calcined at 1250°C
 - 1~3 cm²
- Cell holder: 430 Stainless steel
 - Fuel channel made by CNC machine
- sealing: Commercial Ceramic sealing
- Copper plating on fuel channel
 - by using copper Sulfate bath
 - To prevent catalytic carbon deposition formed by Ni, Fe in stainless steel
- Analysis for carbon deposition
 - GCMS
- Series connection of fuel between two cell for high conversion

- 1: Stainless steel stack
- 2: Cu-cermet anode
- 3: Electrolyte
- 4: Cathode
- 5: Pt current collector
- 6: Ceramic seal

Schematic diagram of the SOFC mount used in this study.

V-i Curves & AC-Impedance Analysis

Cell potential and power density vs. current density while running on H_2 and n-butane at 973 K. The squares are for H_2 and the circles for n-butane.

Power density : $0.16 \text{ W/cm}^2 \text{ for } \text{H}_2, \\ 0.09 \text{ W/cm}^2 \text{ for butane}$

Long Run Test for Hydrocarbon

- Cell performance in n-butane as a function of time at 973 K while holding the cell potential at 0.5 V.
- Very stable performance during 90 hours

Before and After Test

- Photograph of cell mount before (a) and after (b) exposure to n-butane at 973 K for 24 hrs.
- Copper plating on Fuel Channel for reducing the catalytic carbon deposition enduced by Ni, Fe in stainless steel
- Thin carbon deposition on Copper layer after test
 - Easily removed by toluene and analyzed by GCMS

Analysis for Carbon Deposition

Fable 1.	Names	and	molecular	weights	for	selected	
products that are shown in Figure							

Peak no.	Name	MW
1	Ethyl methyl benzene, Propenyl benzene etc.	118
2	1,4-Dihydronaphthalene	130
3	Naphthalene: $C_{10}H_8$	128
4	Acenaphthene: $C_{12}H_{10}$	154
5	Acenaphthylene: C ₁₂ H ₈	152
6	Phenanthrene, Anthracene : $C_{14}H_{10}$	178
7	2-methy-phenanthrene, 1-methyl-anthracene: $C_{15}H_{12}$	192
8	2Phenylnaphthalene: C ₁₆ H ₁₂	204
9	Pyrene: C ₁₆ H ₁₀	202
10	Benzo[a]fluorine, Benzo[b]fluorine: C ₁₇ H ₁₂	216
11	Benzo[a]anthracene, Chrysene, Triphenylene: C ₁₈ H ₁₂	228
12	Benzo-fluoranthene, Benzo-pyrene, Perylene: C ₂₀ H ₁₂	252
13	Benzo[ghi]perylene, Anthanthrene : C ₂₂ H ₁₂	276

•The GC trace obtained from the carbonaceous deposits formed on Cu-plated stainless steel following exposure to n-butane at 973 K for 24 hours.

•The structures of selected species are given, along with numbers corresponding to the compounds in Table 1.

•Poly-Aromatic Hydrocarbons (PAHs) with 2~6 benzene rings

Multi-Stage Connection for High Conversion

Conclusion

- It is possible to obtain gas-tight seals for an SOFC with a Cu-based anode in a stainless-steel bipolar plate
- The tar-like substances on Cu plating analyzed by GC-MS consist primarily of poly-aromatic hydrocarbons having between 2~6 aromatic rings. These compounds are probably form as a result of gas-phase, free-radical reactions. It is important to note that these deposits are very different from what is formed in the presence of a metal catalyst such as Ni or Fe.
- The series-fuel providing to multi-stage cells can increase the conversion and efficiency of fuel.

