PEMFCs – CO Tolerance and Direct Methanol Operation Methanol Operation

J. M. Fenton11/20/02

ME 295/320 Fuel Cell Engg.- J. M. Fenton 1

Cross Section of Proton Exchange Membrane Fuel Cell Cross Section of Proton Exchange Membrane Fuel Cell

Performance Characteristics of a Fuel Cell Performance Characteristics of a Fuel Cell

Current Density (mA/cm2)

Key Overpotential Sources Key Overpotential Sources

- Electrode losses
	- Kinetic losses
	- Transport losses
	- Resistive losses: ionic resistance
- Membrane internal resistance (IR) losses - Includes contact resistances
	-
- Transport losses within the diffusion layers

Objective: Objective: Minimize Losses; Ensure Longevity Minimize Losses; Ensure Longevity

Drawbacks of Direct Hydrogen Operation Drawbacks of Direct Hydrogen Operation

- Hydrogen infrastructure not yet available
- Systems issues (automobile):
	- fuel storage
	- weight and volume for reasonable range
	- ease of refueling?
	- safety?
- Direct hydrogen (pure hydrogen) does not seem feasible (and / or economically viable) in the near future

Other Options?? Other Options??

Indirect Hydrogen

- Reform readily available liquid fuel (or natural gas for stationary applications)
- Use H_2 thus synthesized in the fuel cell
- In-situ, continuous generation
- Mature technology (reforming)

Direct Methanol

- Feed methanol (and water) directly into fuel cell anode
- Oxidize methanol (instead of hydrogen) at the anode
- Methanol may be fed as a liquid or as a vapour
- Greatly simplifies system and infrastructure issues

Fuel Cell Propulsion Systems: Increasing Simplicity

$\frac{1}{2}$

Indirect Hydrogen – Effect of CO

- Reformate stream contains CO and $CO₂$
- CO can be minimized by shift conversion (0.4) – 2 % CO), and further reduced by partial oxidation ($<$ 100 ppm CO)
- However, even 10 ppm of CO detrimental to electrocatalyst – adsorbs on active sites increases anode overpotential
- Clearly, need better fuel processing (and) CO tolerant electrocatalysts (and) a technique to minimize CO adsorption

Effect of CO in Reformate on Performance

Fig. 13. Effects of CO level (ppm) in the hydrogen feed stream on the performance of a PEFC at 80 °C. Both electrodes were based on an ionomer-impregnated Pt/C catalyst and thin sputtered platinum film, of total loading 0.45 mg Pt/cm² [17].

Pressurized Operation??

ME 295/320 Fuel Cell Engg.- J. M. Fenton Gottesfeld

$\frac{d}{d}$ 9

Effect of CO in Reformate on Performance

Cell Performance with Various CO Concentrations at 80^oC and 1atm Anode: H_2 +CO at 90 $^{\circ}$ C, 40%Pt-Ru/C; Cathode: O₂

Why the Performance Loss? Why the Performance Loss?

 $E_{cell} = E_{\text{ cathode}} - E_{\text{anode}}$ Thermodynamically:

 $E_{\text{ cathode}} = 1.23 \text{ V} (O_2 + 4 \text{ H}^+ + 4 \text{e}^- = 2 \text{H}_2 \text{O})$ $E_{\text{anode}} = 0 \text{ V } (H_2 = 2H^+ + 2e^-)$ Therefore $E_{cell}(max) = 1.23$ V In the presence of CO, two electrochemical reactions occur:

$Pt + CO$	CO/Pt
$H_2 + 2Pt$	$2 H/Pt$ (rate-limiting)
H/Pt	$Pt + H^+ + e^-$
$CO/Pt + OH_{ads}$	$Pt + CO_2 + H^+ + e^-$

- Anode overpotential determined by the relative contribution of CO oxidation
- Low currents hydrogen requirements met by adsorbed $H₂$
- High currents (or large CO concentrations) adsorbed H₂ insufficient for faradaic requirements
- Therefore, CO removal (via electrooxidation) has to occur – higher anode overpotential, higher E $_{\text{anode}}$ – lower E_{cell}

Key Strategy: minimize CO adsorption on catalyst

Anode Overpotentials of 40% wt Pt-Ru/C (Pt/Ru = $1/1$) with H₂ containing CO (10.4 to 485 ppm) at 80 °C (100% **R.H.).**

Recall: Performance characteristics chart – contribution of anode overpotential (slide 3)

Note: increasing overpotential with: increasing CO concentration and increasing currents

ME 295/320 Fuel Cell Engg.- J. M. Fenton 5i, Jiang

How to Deal with CO?

- Air Bleed (or oxygen bleed)
- \bullet Better (more CO tolerant) anode electrocatalysts
- Elevated temperature operation

Each of above briefly discussed in forthcoming slides

Note – improvements in reforming, shift conversion and partial oxidation steps are also of great use – however, these approaches are not discussed in this lecture

Air / Oxygen Bleed Air / Oxygen Bleed

- CO surface coverage biggest problem
- Bleeding oxygen (as oxygen or as air) into the fuel stream helps:
	- $\mathcal{L}_{\mathcal{A}}$ CO poisoning Pt sites are oxidized in the presence of free platinum to give $CO₂$

- The strong preferential adsorption of CO on Pt actually helps this mechanism!

Demonstration of Air Bleed Efficacy Demonstration of Air Bleed Efficacy

Fig. 14. Cleansing by oxygen bleeding of a platinum anode catalyst in the presence of 5-20 ppm CO in the hydrogen fuel, demonstrated for a platinum anode catalyst of ultra-low loading (0.14 mg Pt/cm²), consisting of a Pt/C//ionomer thin film composite bonded to the membrane [21]. (Reprinted by permission of the American Chemical Society).

Demerits of Air Bleed Technique Demerits of Air Bleed Technique

- Explosive limit of O_2 in H_2 is 5%. This limits amount of CO tolerated to \sim 100ppm
- Some loss in fuel efficiency due to chemical oxidation of hydrogen
- This loss increases as amount of oxygen introduced increases (2 fold increase) – thus the larger the amount of CO in stream, the larger the loss of fuel efficiency

CO Tolerant Electrocatalysts CO Tolerant Electrocatalysts

Recall: mechanism of CO and H₂ oxidation in a mixed stream:

 $Pt + CO \longrightarrow CO/Pt$

 H/Pt Pt + H⁺ +e⁻

 $H_2 + 2 Pt$ \longrightarrow 2 H/Pt (rate-limiting)

 $\text{CO/Pt} + \text{OH}_{\text{ads}} \longrightarrow \text{Pt} + \text{CO}_2 + \text{H}^+ + \text{e}^{-}$ Now, for CO electrooxidation, the catalyst site must be hydrated (have an attached hydroxyl group on its surface)

> $Ru + H_2O \longrightarrow Ru-OH_{ads} + H^+ + e^ Pt + H_2O \longrightarrow$ Pt-OH_{ads} + H⁺ + e-

The potential at which this group is generated varies from catalyst to catalyst:

- 0.5 V for Pt
- \sim 0.2 V for Ru!
- Thus, catalysts with Ru will have a lower anodic overpotential at high currents (or high CO concentrations) than catalysts containing Pt
- Ru not a very good catalyst for H_2 oxidation
- Pt-Ru alloys have been successfully used

However – limitations such as increasing **anode overpotential with increasing CO anode overpotential with increasing CO concentration and increasing currents are concentration and increasing currents are not eliminated by this approach**

- The extent of CO tolerance depends greatly on the catalyst structure and formulation
- Even for the best catalysts, the improved CO tolerance all but vanishes for high currents
- However, a combination of precisely formulated catalyst (typically 1:1:: Pt:Ru) and air / oxygen bleed has been found to be effective at high currents as well

Elevated Temperature Operation Elevated Temperature Operation

- CO adsorption on Pt is an exothermic process
- By the Le-Chatlier Braun principle, increasing the system temperature favours the endothermic CO desorption reaction
- Effect of increasing system temperature is to lower the fraction of catalyst covered with CO, thereby lowering anode overpotential
- The effect has been clearly demonstrated

 $CO+Pt = CO-Pt$ (associative adsorption) H_2+2 Pt = 2 H-Pt (dissociative adsorption)

Fractional coverage (f) of CO and H given by: $\rm{f_{CO}}$ = $\rm{K_{CO}}$ $\rm{P_{CO}}$ /[1+ $\rm{K_{CO}}$ $\rm{P_{CO}}$ + $\rm{K_{H}}^{0.5} \rm{P_{H}}^{0.5}]$ $\rm{f_{H}=K_{H}^{-0.5}P_{H}^{-0.5}/[1\pm K_{CO}\,P_{CO}+K_{H}^{-0.5}P_{H}^{-0.5}]}$ $K =$ equilibrium constants, $P =$ partial pressures

As T increases, f_H increases as H adsorption is less exothermic than CO adsorption, and because H adsorption requires 2 sites as opposed to one for **CO adsorption CO adsorption**

Effect of temperature on CO chemisorption on potential Anode catalysts – note also the exceptional CO tolerance of **Pt-Ru alloys when compared to Pt**

ME 295/320 Fuel Cell Engg.- J. M. Fenton Si

CO Coverage on the Pt-Ru Catalyst Surface at Various Temperatures Various Temperatures

Anode overpotentials vs. current density and CO concentration on Pt-Ru catalyst

Similar scales, increasing temperature from left to right (80C, 105C and 120C)

Performance curves follow

IR-Free H₂/O₂Cell Performance with Different CO Concentrations at 120 oC on Pt-Ru

Pure H2

H2+10.4ppm CO

Can we extend this infinitely? Can we extend this infinitely?

- \bullet **NO!!!**
- \bullet • Materials issues rise to the fore – especially the ionomeric membrane in a PEMFC
- **Note:** previous figures indicated 105^oC to be a better CO tolerant operating temperature than 120°C – contrary to expectation based on Le-Chatlier- Braun principle
- This apparent contradiction effect of membrane resistance, cathode overpotential and system water content. These issues will be discussed in the following slides

Note – membrane conductivity (p) determines its resistance at any given condition for a given thickness (t) and active area $(A)(R = p t/A)$

Temperature and Relative Humidity Temperature and Relative Humidity

- Linked to one another
- Maintaing a saturated environment above 100°C – requires system pressurization
- Leads to parasitic power losses and complex systems
- Need exists to develop membranes for high temperature / low relative humidity operations

Is proton conductivity influenced by **temperature and water content?? temperature and water content??**

Limitations of Current PEM Technology Limitations of Current PEM Technology

- Conductivity strong function of water content
- • Drops in under saturated environments
- • Increased membrane and electrode resistance at High T / Low RH

ME 295/320 Fuel Cell Engg.- J. M. Fenton Zawodzinski/Gottesfeld, Ramani 30

Conductivity Mechanisms Conductivity Mechanisms

"Vehicular" mechanism

- Proton attached to solvent ("vehicle") molecule – e.g. $\rm H_3O^+$
- Moves at rate of vehicular diffusion
- Vehicle counter diffusion
- **Net proton transport – governed by vehicle diffusion rates**

Grotthuss mechanism

- Also called "hopping" mechanism
- Stationary vehicles (only local motion)
- Proton "hops" from vehicle to vehicle
- **Always** within H bond environment
- Solvent reorientation provides H^+ pathway
- •**Continuous motion**

Gierke Cluster Network Model for Nafion Gierke Cluster Network Model for Nafion®

ME 295/320 Fuel Cell Engg.- J. M. Fenton Columban

Conductivity in Nafion Conductivity in Nafion®

LT / 100% RH

- \bullet High water uptake
- \bullet **Combined vehicular / Grotthuss mechanisms**
- \bullet Large water content – symmetric environment
- \bullet Easy, quick reorientation
- \bullet Large cluster diameters (4 nm); large interconnecting pores $(\sim 1$ nm)
- \bullet **Good diffusional transport**
- •**Fast hopping**
- •**High conductivity!**

HT / LRH

- \bullet Low water uptake
- \bullet Cluster shrinks (\sim 2.4 nm)
- •**Hopping – difficult**
- \bullet **Proton transport – vehicular mechanism**
- •Pore narrowing
- • **Poor diffusional transport**
- •**Low conductivity!**

Alternate Strategy Alternate Strategy

- • Nafion® composite membranes
- • Incorporation of inorganic additives to Nafion® matrix
- • Additives used –Heteropolyacids (HPAs), layered phosphates, metal oxides, etc.

Nafion[®] 112

Nafion® / PTA

Nafion® vs. composite membranes

H_2/O_2 , 1 atm

Effectiveness of composite membranes at high temperatures and low relative humidities temperatures and low relative humidities

- The development of such composite membranes permits operation at higher temperatures – though resistive losses are still greater than at 80°C
- The temperatures currently attainable at ambient pressure (130°C) allow operation (in conjunction with CO tolerant catalysts) with up to 100ppm CO with minimal losses (when compared to operation with pure $\rm H_2$ at $130^oC)$
- This approach can be combined with techniques such as air-bleed for greater efficacy
- Further improvement hinges on improved membranes and electrocatalysts

Effect of Water Content on CO Tolerance

- **Recall:** CO oxidation **requires** the generation of hydroxyl (OH-) groups on the catalyst surface
- Such groups are generated by the oxidation of **water**
- Thus, better CO tolerance can be achieved under well hydrated conditions

Trade off exists between Temperature (and lower surface coverage) and humidity (and more hydroxyl groups generated on more hydroxyl groups generated on catalyst)!! catalyst)!!

Effect of CO on Membrane Resistance

Resistance: Resistance:

- Constant at 100% RH,

-Increases slightly with CO concentration at 50% RH

- Increases perceptibly at 30% RH

Why Does Resistance Increase? Why Does Resistance Increase?

- The oxidation of CO to $CO₂$ will occur at a rate determined by the current output of the cell
- Thus, all available water is used up (to generate hydroxyl groups) at a particular CO concentration
- Any increase in CO concentration will result in water being sucked out from the membrane to support CO oxidation – thereby increasing membrane resistance
- The CO concentration at which this starts to occur is lower at lower relative humidities

Effect of CO₂ on PEMFC Performance

- $CO₂$ neither chemically nor electrochemically inert!
- Can be chemically reduced to give CO (reverse water gas shift: $CO_2 + H_2 = CO + H_2O$
- Can be electrochemically reduced to give CO $\rm CO_2 + 2H^+ + 2$ e⁻ = CO+ $\rm H_2O$
- Approaches similar to those adopted for CO tolerance have been shown to improve $CO₂$ tolerance as well

Effect of CO Effect of CO2 – Treatment Using Air Treatment Using Air-Bleed

Fig. 16. Effects of CO₂ at the level expected in amethanol reformate, and of subsequent oxygen addition to the anode, in the case of a H_2 /air PEFC with a 0.12 mg Pt/cm² thin-film anode [21]. (Reprinted by permission of the American Chemical Society).

ME 295/320 Fuel Cell Engg.- J. M. Fenton Gottesfeld

$\mathbf d$ and $\mathbf d$