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PEMFCs PEMFCs –– CO Tolerance and Direct CO Tolerance and Direct 
Methanol OperationMethanol Operation
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Cross Section of Proton Exchange Membrane Fuel CellCross Section of Proton Exchange Membrane Fuel Cell
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Performance Characteristics of a Fuel CellPerformance Characteristics of a Fuel Cell
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Key Overpotential SourcesKey Overpotential Sources

• Electrode losses
- Kinetic losses
- Transport losses
- Resistive losses: ionic resistance

• Membrane internal resistance (IR) losses
- Includes contact resistances

• Transport losses within the diffusion layers

Objective:Objective:
Minimize Losses; Ensure LongevityMinimize Losses; Ensure Longevity
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Drawbacks of Direct Hydrogen OperationDrawbacks of Direct Hydrogen Operation

• Hydrogen infrastructure – not yet available 
• Systems issues (automobile): 

- fuel storage
- weight and volume for reasonable range
- ease of refueling?
- safety?

• Direct hydrogen (pure hydrogen) does not 
seem feasible (and / or economically viable) in 
the near future
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Other Options??Other Options??

Indirect Hydrogen
• Reform readily available 

liquid fuel (or natural 
gas for stationary 
applications)

• Use H2 thus synthesized 
in the fuel cell

• In-situ, continuous 
generation

• Mature technology 
(reforming)

Direct Methanol
• Feed methanol (and 

water) directly into fuel 
cell anode

• Oxidize methanol 
(instead of hydrogen) at 
the anode

• Methanol may be fed as 
a liquid or as a vapour

• Greatly simplifies 
system and 
infrastructure issues
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Indirect Hydrogen Indirect Hydrogen –– Effect of COEffect of CO

• Reformate stream – contains CO and CO2

• CO can be minimized by shift conversion (0.4 
– 2 % CO), and further reduced by partial 
oxidation (< 100 ppm CO)

• However, even 10 ppm of CO – detrimental to 
electrocatalyst – adsorbs on active sites -
increases anode overpotential

• Clearly, need better fuel processing (and) CO 
tolerant electrocatalysts (and) a technique to 
minimize CO adsorption
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Effect of CO in Reformate on PerformanceEffect of CO in Reformate on Performance

Pressurized Operation??
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Effect of CO in Reformate on PerformanceEffect of CO in Reformate on Performance

Current density(mA/cm2)
0 400 800 1200 1600 2000 2400

C
el

l V
ol

ta
ge

(V
)

0.0

0.2

0.4

0.6

0.8

1.0

R
es

is
ta

nc
e(

O
hm

-c
m

2 )

0.0

0.2

0.4

0.6

0.8

1.0
Perf.-H2

Resistance-H2

Perf.-H2+10.4ppmCO
Resistance-H2+10.4ppmCO
Perf.-H2+104ppmCO
Resistance-H2+104ppmCO
Perf.-H2+485ppmCO
Resistance-H2+485ppmCO

Cell Performance with Various CO Concentrations at 80oC and 1atm
Anode:H2+CO at 90oC, 40%Pt-Ru/C; Cathode: O2



ME 295/320 Fuel Cell Engg.- J. M. Fenton Gottesfeld 11

Why the Performance Loss?Why the Performance Loss?

Ecell = E cathode – E anode
Thermodynamically:

E cathode = 1.23 V (O2+4 H+ + 4e- = 2H2O)
E anode = 0 V (H2 = 2H++2e- )

Therefore Ecell (max) = 1.23 V
In the presence of CO, two electrochemical 
reactions occur:

Pt + CO                          CO/Pt               
H2 + 2 Pt                           2 H/Pt  (rate-limiting)    
H /Pt                             Pt + H+ +e-

CO/Pt + OHads Pt + CO2 + H+ + e-
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• Anode overpotential – determined by the relative 
contribution of CO oxidation

• Low currents – hydrogen requirements met by 
adsorbed H2

• High currents (or large CO concentrations) – adsorbed 
H2 insufficient for faradaic requirements 

• Therefore, CO removal (via electrooxidation) has to 
occur – higher anode overpotential, higher E anode –
lower Ecell

Key Strategy: minimize CO adsorption on 
catalyst
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Note: increasing overpotential with: increasing CO 
concentration and increasing currents

Recall: Performance 
characteristics chart  
– contribution of 
anode overpotential 
(slide 3)
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How to Deal with CO? How to Deal with CO? 

• Air – Bleed (or oxygen bleed)
• Better (more CO tolerant) anode electrocatalysts
• Elevated temperature operation

Each of above briefly discussed in forthcoming 
slides

Note – improvements in reforming, shift 
conversion and partial oxidation steps are 

also of great use – however, these 
approaches are not discussed in this lecture
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Air / Oxygen BleedAir / Oxygen Bleed
• CO surface coverage – biggest problem
• Bleeding oxygen (as oxygen or as air) into the fuel 

stream helps:
- CO poisoning Pt sites are oxidized in the presence of free 

platinum to give CO2

CO/Pt +O2 + Pt O/Pt + CO/Pt
O/Pt + CO/Pt CO2+2Pt
½ O2 + H2 H2O

- The strong preferential adsorption of CO on Pt actually 
helps this mechanism!
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Demonstration of Air Bleed EfficacyDemonstration of Air Bleed Efficacy
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Demerits of Air Bleed TechniqueDemerits of Air Bleed Technique

• Explosive limit of O2 in H2 is 5%. This limits 
amount of CO tolerated to ~100ppm

• Some loss in fuel efficiency due to chemical 
oxidation of hydrogen

• This loss increases as amount of oxygen 
introduced increases (2 fold increase) – thus 
the larger the amount of CO in stream, the 
larger the loss of fuel efficiency
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CO Tolerant ElectrocatalystsCO Tolerant Electrocatalysts
Recall:Recall: mechanism of CO and H2 oxidation in a mixed 

stream:
Pt + CO                          CO/Pt               

H2 + 2 Pt                           2 H/Pt  (rate-limiting)    
H /Pt                             Pt + H+ +e-

CO/Pt + OHads Pt + CO2 + H+ + e-

Now, for CO electrooxidation, the catalyst site must be 
hydrated (have an attached hydroxyl group on its 
surface)

Ru + H2O                     Ru-OHads + H+ + e-
Pt + H2O               Pt-OHads + H+ + e-

The potential at which this group is generated varies 
from catalyst to catalyst:

- 0.5 V for Pt
- ~ 0.2 V for Ru!
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• Thus, catalysts with Ru will have a lower 
anodic overpotential at high currents (or high 
CO concentrations) than catalysts containing Pt

• Ru – not a very good catalyst for H2 oxidation
• Pt-Ru alloys – have been successfully used

However However –– limitations such as increasing limitations such as increasing 
anode overpotential with increasing CO anode overpotential with increasing CO 

concentration and increasing currents are concentration and increasing currents are 
not eliminated not eliminated by this approachby this approach
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• The extent of CO tolerance depends greatly on 
the catalyst structure and formulation

• Even for the best catalysts, the improved CO 
tolerance all but vanishes for high currents

• However, a combination of precisely 
formulated catalyst (typically 1:1:: Pt:Ru) and 
air / oxygen bleed has been found to be 
effective at high currents as well
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Elevated Temperature OperationElevated Temperature Operation

• CO adsorption on Pt is an exothermic process
• By the Le-Chatlier – Braun principle, 

increasing the system temperature favours the 
endothermic CO desorption reaction

• Effect of increasing system temperature is to 
lower the fraction of catalyst covered with CO, 
thereby lowering anode overpotential

• The effect has been clearly demonstrated
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CO+Pt = CO-Pt (associative adsorption)
H2+2 Pt = 2 H-Pt (dissociative adsorption)

Fractional coverage (f) of CO and H given by:
fCO = KCO PCO/[1+ KCO PCO+KH

0.5PH
0.5]

fH = KH
0.5PH

0.5 /[1+ KCO PCO+KH
0.5PH

0.5]
K = equilibrium constants, P = partial pressures

As T increases,As T increases, ffH  H  increases as H adsorption is less increases as H adsorption is less 
exothermic than CO adsorption, and because H exothermic than CO adsorption, and because H 
adsorption requires 2 sites as opposed to one for adsorption requires 2 sites as opposed to one for 

CO adsorptionCO adsorption
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Temperature (oC)
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CO concentration in H2 (ppm)
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Performance curves follow
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Can we extend this infinitely?Can we extend this infinitely?
•• NO!!!NO!!!
• Materials issues rise to the fore – especially the ionomeric 

membrane in a PEMFC
• Note: previous figures indicated 105°C to be a better CO 

tolerant operating temperature than 120°C – contrary to 
expectation based on Le-Chatlier- Braun principle

• This apparent contradiction – effect of membrane resistance, 
cathode overpotential and system water content. These issues 
will be discussed in the following slides

Note – membrane conductivity (p) determines its resistance at 
any given condition for a given thickness (t) and active area 

(A)(R = p t/A)
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Temperature and Relative HumidityTemperature and Relative Humidity

• Linked to one another
• Maintaing a saturated environment above 

100°C – requires system pressurization
• Leads to parasitic power losses and complex 

systems
• Need exists to develop membranes for high 

temperature / low relative humidity operations

Is proton conductivity influenced by Is proton conductivity influenced by 
temperature and water content??temperature and water content??
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Limitations of Current PEM TechnologyLimitations of Current PEM Technology

• Conductivity – strong 
function of water content

• Drops in under saturated 
environments

• Increased membrane and 
electrode  resistance at 
High T / Low RH

Conductivity vs. T and RH - Nafion 112
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Conductivity MechanismsConductivity Mechanisms
“Vehicular” mechanism
• Proton attached to 

solvent (“vehicle”) 
molecule – e.g. H3O+

• Moves at rate of 
vehicular diffusion

• Vehicle counter 
diffusion 

• Net proton transport –
governed by vehicle 
diffusion rates

Grotthuss mechanism
• Also called “hopping” 

mechanism
• Stationary vehicles (only 

local motion)
• Proton “hops” from vehicle 

to vehicle
• Always within H bond 

environment
• Solvent reorientation –

provides H+ pathway 
• Continuous motion
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Gierke Cluster Network Model for NafionGierke Cluster Network Model for Nafion®®
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Conductivity in NafionConductivity in Nafion®®

LT / 100% RH
• High water uptake 
• Combined vehicular / 

Grotthuss mechanisms
• Large water content – symmetric 

environment
• Easy, quick reorientation
• Large cluster diameters (4 nm); 

large interconnecting pores       
(~ 1nm)

• Good diffusional transport
• Fast hopping 
• High conductivity! 

HT / LRH
• Low water uptake
• Cluster shrinks (~ 2.4 

nm)
• Hopping – difficult
• Proton transport –

vehicular mechanism
• Pore narrowing
• Poor diffusional 

transport
• Low conductivity!
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Alternate StrategyAlternate Strategy

• Nafion®

composite 
membranes 

• Incorporation of 
inorganic additives    
to Nafion® matrix

• Additives used –
Heteropolyacids 
(HPAs), layered 
phosphates, metal 
oxides, etc.

Nafion® 112 Nafion® / PTA

Nafion® vs. composite membranes
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• The development of such composite membranes 
permits operation at higher temperatures – though 
resistive losses are still greater than at 80°C

• The temperatures currently attainable at ambient 
pressure (130°C) allow operation (in conjunction with 
CO tolerant catalysts) with up to 100ppm CO with 
minimal losses (when compared to operation with 
pure H2 at 130°C)

• This approach can be combined with techniques such 
as air-bleed for greater efficacy

• Further improvement hinges on improved membranes 
and electrocatalysts
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Effect of Water Content on CO ToleranceEffect of Water Content on CO Tolerance

• Recall: CO oxidation requires the generation 
of hydroxyl (OH-) groups on the catalyst 
surface

• Such groups are generated by the oxidation of 
waterwater

• Thus, better CO tolerance can be achieved 
under well hydrated conditions
Trade off exists between Temperature (and Trade off exists between Temperature (and 
lower surface coverage) and humidity (and lower surface coverage) and humidity (and 

more hydroxyl groups generated on more hydroxyl groups generated on 
catalyst)!!catalyst)!!
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Effect of CO on Membrane ResistanceEffect of CO on Membrane Resistance
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- Constant at 
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-Increases 
slightly with CO 
concentration at 
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- Increases 
perceptibly at 
30% RH
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Why Does Resistance Increase? Why Does Resistance Increase? 

• The oxidation of CO to CO2 will occur at a rate 
determined by the current output of the cell

• Thus, all available water is used up (to generate 
hydroxyl groups) at a particular CO 
concentration

• Any increase in CO concentration will result in 
water being sucked out from the membrane to 
support CO oxidation – thereby increasing 
membrane resistance

• The CO concentration at which this starts to 
occur is lower at lower relative humidities
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Effect of COEffect of CO22 on PEMFC Performanceon PEMFC Performance

• CO2 – neither chemically nor electrochemically 
inert!

• Can be chemically reduced to give CO (reverse 
water gas shift: CO2 + H2 = CO+ H2O)

• Can be electrochemically reduced to give CO
CO2 + 2H+ + 2 e- = CO+ H2O

• Approaches similar to those adopted for CO 
tolerance have been shown to improve CO2
tolerance as well
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Effect of COEffect of CO22 –– Treatment Using AirTreatment Using Air--BleedBleed


