2 redox : , 1980 Enichem -1(TS-1) H_2O_2 Ti-Beta가 [1, 2]. [3], 7 Mobil M41S 35 / . Blasco [4] Si Ti 408K Ti-MCM 41 . Ti-MCM41 -terpineol, 1-naphthol, norbornylene, cyclododecanol, 2,6 DTBP(di-tert-butyl phenol) 1 [5-7]. Tanev [8] (template) **Ti-HMS** . 2,6 DTBP , Ti-HMS Ti-MCM41 가 HMS (textual mesopore) / . Textual , Ti-HMS 0.03 ml/g ,10-30 nm Ti-MCM-41 1.11 ml/g [9]. Ti-HMS Ti-MCM 41 H_2O_2 [6]. Ti-HMS -pinene campholenic santalol aldehyde [10]. 3 Ti-1 MCM-48 Ti-MCM-41 $H_2O_2 \\$ [11,12]. 가 XRD 2-4 가 가 Ti . Ti ²⁹Si MAS NMR spectra Q^4 960 cm $^{-1}$ 가 [9]. IR spectra Ti , 800 cm $^{-1}$ SiO₄

960 cm $^{-1}$ Ti 960 cm $^{\rm -1}$ 가 [6]. IR 가 가 Ti Si-O⁻ . Ti 가 UV-Vis diffuse reflectance spectra 가 220 nm 250-320 nm . 220nm (IV) . TS-1 Ti(IV) 212 nm , Ti [9]. 270nm Ti-O-Ti (oligomerized) octahedral Ti Ti , 가 가 . 330 nm anatase . Ti(IV) XPS spectrum 459.8 eV Ti $(2P_{3/2})$ Ti 458.6 eV [6]. XANES **EXAFS** [4] 4968 eV . Ti-K edge XANES Ti pre-edge rutile anatase Ti pre-edge Ti • , pre-edge 가 XANES spectrum . EXAFS , 0.194-0.196 nm 가 Ti-O Ti-O 0.180-0.186 nm가 Ti 77K -irradiation . ESR spectroscopy . g_{ll} =1.971 g =1.901 3가 Ti ESR $g_{ll} = 1.898$ g [13]. Ti-MCM-41 =1.967 Ti(III) g 250 nm Photoluminescence spectra 430 480 nm 400 550-600 nm Ti(IV) 550-600 nm 430 and 480 nm Ti(IV) [14].

silanol

, ,

,

	,		•	H_2O_2		1-
hexene				TS-1 >	Ti-Beta > Ti-	MCM-
41 .	MCM-41	l				/
2			Ti			가
				. MCM-41		silanol
Ti-MCM-41						,
tert-butyl hydro	peroxide (T	BHP)				
가	1	,		, Ti-J	MCM-41	
TiO ₂ -SiO ₂						
Tatsumi [15]	silanol	Me	SiCl	(Me ₃ Si) ₂ O		
trimethylsilylation		Ti-MCN	/I -41	48		
	H_2O_2		сус	clohexene		
			•	. BET	,	,
trimeth	ylsilylation			XRD		d
spacing		. Corma	[16]	TBHP		
					40%	
silylation 가					TBHP	
		silylation				
	Ti(C	$OC_2H_5)_4$	CH ₃ S	$i(OC_2H_5)_4$	Si(OC ₂ H ₅) ₄	
가				-		
Ti-MCM-41	TBHP					
		[17].		-		
		35 %	가		Ti-M0	CM-41
가		TBHP				
	,					Ti
		H_2O_2		가		,
				[18].		
가				가		,
4-	Ti(IV)				Ti-MCM-4	1
H_2SiF_6					[1	9],
					:	,
				[20]	TiCl ₃	[21]
Ti 가					anatase	TiO ₂
	•					

Ti host grafting Maschmeyer [22] MCM-41 titanocene dichloride grafting TBHP , cyclohexene pinene 가 , grafting MCM-48 V-, Zr-, Mometallocene grafting[23] metallocene grafting (leaching) . grafting 3 D textual mesoporocity MCM-48 HMS 2,6 DTBP . Grafting 가 가 [24]. MCM-41 Ti(OSiPh₃)₄ grafting / [25]. , MCM-41 Ti [26], Titanium(IV) silsesquioxane MCM-41 [27] [28] SBA-15 TiCl₄ Ti-SBA-15 , Ti [29] . Ti-SBA-15 [30], titanocene dichloride [31] grafting Tiisopropoxide [32] 가 SBA-15 , gtafting Ti grafting 가 Ti-SBA-15 . Ti-SBA-15 silylation / Ti-MCM-41 Ti-SBA-15 [30]. Jarupatakorn Tilley [33] $(^{i}PrO)Ti[OSi(O^{t}Bu)_{3}]_{3}$ tris(tert-butoxy)siloxy titanium complexes grafting •

	TiO_4	SiO ₄ 가			,	
Ti		,	cumene	hydroperoxid		
cyclohexene				/		-
OSi(O ^t Bu) ₃		가 g	grafting		, grafting	
Ti		SBA-15				

.

,

					가		
			Ti-MCM-41				Si Ti
	complexing	2,2	,2,-nit	rile-trie	hanol	가 ,	
						가	가
		[34],	Si/Ti	가	1.9		. Bagshaw
[35]	Ti-MSU						
			, Ti	가			
. Ti-t	ois(ethyl acetoace	etato) di	isopropo	oxide		1	10 mol %
Ti		•	Т	ïCl ₄	grafti	ng	
5.3	9.7 wt %	Ti			Ti-MC	CM-41	[36].
Ti	titanylacetylac	etonate				Ti-MCM	-48 , grafting
			가	,		TiO ₂	10 wt %
Т	ï			[3	57].	Ti	
,						Ti	가
						,	VOC
		•					
						가	
	가 가 .	,		가	t	riethanolamin	e
Ti-T	TUD-1 가		[38]. Tri	iethan	olamine		
			,		가	가	
triethanola	amine						. Ti-TUD-1
2.5	25 nm	-	가			가	
3			가,				grafting
Ti-MCM-4	48						Ti-TUD-1
	Ti-	MCM-4	-1				6
			,			$(_{\rm P} {\rm H} < 1)$	
TS-1					trib	lock polymer((P123)
		N	ITS-9				
		1					

[39]. MTS-9 TS-1

		2,3,6 trimet	hyl pheno	ol			
	,	Ti			TS-1		
	,			120h			
V	anadosilica	tes H_2O_2					
		•		vanadyl(IV)) sulfate		
V-N	/ICM-41	1-naphthol	cyclod	odecane			
		[40]. NMR	ESR		V-MCM-	-41	
	[41],					4	
			, V^{5+}	V^{4+}			
	. vanady	l(IV) sulfate	va	nadium(V)	isopropoxide		V-
HMS					. 2,6 D	TBP	
	V-HMS	Ti-HMS			H_2O_2		
	/			V-HMS			
		,					
		[42].					
						V-M	ICM-41
isobut	vlaldehvde	O_2					
	가			anhvd	rous peracid	acv	lperoxo
radical	·	, [43	I. V-MC	M -4148	F	J	L
		[44].	V-SBA-	1 [45]			
		L J7		L - J	Zr-HMS	[46]	Nb-
MCM-41	[47]					ferrio	e nitrate
	Fe-MCN	Л-41				[48]	minute
ammo	nium aceta	ite		Cr-MCM-4	171	[10].	
ammo	mum accia	lite		CI-INICINI-4	1 * 1		[/0]
W 7 1	MCM 41	(\mathbf{NH}_{i}) , WO					[47].
vv -1	VICIVI-41	$(1 \times 11_4)_2 \times 0_4$					
			[50]				
N	[atalloon zu	m 00	[30].	Shiff	hasa phthal	oovonin	
nornhuii	ligend	11105		51111	biomimatic	ocyanni	5
porpuyrin	irganu			Craftin	a	/	
				. Gratun	g		

.

{	Comments	• 9.5% loss of Fe complex after 10 repeat runs	• Protection effect of the matrix leading to higher TON	 Metal leaching serious 	 Spacer(ATMS) significant contribution 	• Direct anchoring of pre fabricated Mn-complex vs stepwise assembling	• Improved ligand design	 Matrix protection effect Mild deactivation after 	• Mn more active than V, Cr, Fe,
	Reaction	Hydroxylation of Phenol with H ₂ O ₂	Benzylalcohol oxidation with TBHP	Cyclohexene oxidation with H ₂ O ₂	Phenol hydroxylation with H ₂ O ₂	Styrene/cyclic olefin epoxidation using PhIO or m-CPBA	Cyclohexene oxidation (to ether) with TBHP	Styrene/cyclohexene epoxidation with PhIO	Styrene/stilbene epoxi
	Prep. Method	[Fe()-(Phen) ₃]Cl ₂ ion- exchange with H-MCM-41	Impregnation	Tethering	Tethering	Tethering	Tethering	Grafting of Mn-Porphyrin complex	Template ion exchange using
	Catalyst	Fe()-Phen/ MCM-41	Fe()-Phen/ MCM-41	Fe,Cu/ MCM-41	Fe/MCM-41	Mn()-salen/ MCM-41	Mn()complex/ MCM-41	Mn()complex/ MCM-41	Mn-MCM-41
, ,	Ref	105	106	107	108	109	110	111	112

Table 1. Transition metal complex immobilization on MCM-41 for liquid phase oxidation reactions.

1

. Arends

Sheldon [51]

•

가

Comments	• Onset temperature 100°C low er than with commercial SiO ₂	• 3-bromopropyltrichlorosilane tethering improves TOF and selectivity	• Stable after 5 runs (no leaching)	 Fine chemical synthesis Comparison of prep. Methods 	 Phosphoramide anchored MCM- 41 most promising 	Comparison of synthesis methodMetal leaching	 Comparison of prep. methods 	 alkali metal additive necessary
Reaction	Propene combustion	Cyclohexane to cyclohexanone with TBHP	Norbornene/1-naphthol oxidation with TBHP	Oxidation of primary alcohols	Bulky olefin epoxidation with H ₂ O ₂	Cyclooctene epoxidation with H ₂ O ₂	n-hexane oxidation with TBHP	2,6 DTBP oxidation in air
Prep. Method	Immobilization of gaseous Mn ₂ (CO) ₁₀ + calcination	Immobilization of monohydroxy-cobalt complex	Grafting of Cr-salen complex	Tethering	Peroxo-W complex tethering	Grafting or direct synthesis using W-oxo(peroxo) species	Ship in bottle/direct/grafting	Impregnation
Catalyst	Mn/MCM-41	Co complex/ MCM-41	Cr()salen/ MCM-41	TEMPO/ MCM-41	W complex/ MCM-41	W complex/ MCM-41	Ru/MCM-41	Cu/MCM-41
Ref	113	114	115	116	117	118	119	120

Table 1. (continued)

- Notari B., Microporous crystalline titanium silicates, *Advances in Catalysis* 41 (1996) pp. 253-334.
- Vayssilov G. N., Structural and physicochemical features of titanium silicalites, *Catal. Rev. Sci. Eng.* **39** (1997) pp. 209-251.
- 3. Corma A., Camblor M. A., Esteve P., Martines A. and Perezpariente J., Activity of Ti-beta catalyst for the selective oxidation of alkenes and alkanes, *J. Catal.* **145** (1994) pp. 151-158.
- 4. Blasco T., Corma A., Navarro M. T. and Peraz P. J., Synthesis, characterization and catalytic activity of Ti-MCM-41 structures, *J. Catal.* **156** (1995) pp. 65-74.
- 5. Koyano K. A. and Tatsumi T., Synthesis of titanium-containing MCM-41, *Micropor. Mater.* **10** (1997) pp. 259-271.
- Reddy J. S., Dicko A. and Sayari A., Ti-Modified mesoporous molecular sieves, Ti-MCM-41 and Ti-HMS. In synthesis of microporous material: zeolites, clays and nanostructure, ed. by Occelli M. L. and Kessler H. (Marcel Dekker, New York, 1996) pp. 405-417.
- 7. Corma A., Iglesias M. and Sanchez F., Large pore Ti-zeolites and mesoporous Ti-silicalites as catalysts for selective oxidation of organic sulfides, *Catal. Lett.* **39** (1996) pp. 153-156.
- 8. Tanev P. T., Chibwe M. and Pinnavaia T. J., Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, *Nature* **368** (1994) pp. 321-323.
- 9. Zhang W. Z., Froba M., Wang J. L., Tanev P. T., Wong J. and Pinnavaia T. J., Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S⁺I⁻, S⁺X⁻I⁺) and neutral (S^oI^o) assembly pathways: a comparison of physical properties and catalytic activity for peroxide oxidations, *J. Am. Chem. Soc.* **118** (1996) pp. 9164-9171.
- Suh Y. W., Kim N. K., Ahn W. S. and Rhee H. K., Redox-mesoporous molecular sieve as a bifunctional catalyst for the one-pot synthesis of campholenic aldehyde from α-pinene, *J. Mol. Catal. A: Chemical* 174 (2001) pp. 249-254.
- 11. Koyano K. A. and Tatsumi T., Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure, *Chem. Commum.* (1996) pp. 145-146.
- Corma A., Kan Q. and Rey F., Synthesis of Si and Ti-Si-MCM-48 mesoporous materials with controlled pore sizes in the absence of polar organic additives and alkali metal ions, *Chem. Commun.* (1998) pp. 579-580.
- Parkash A. M., Sung-suh H. M. and Kevan L., Electron spin resonance evidence for isomorphous substitution of titanium into titanosilicate TiMCM-41 mesoporous molecular sieve, *J. Phys. Chem. B* 102 (1998) pp. 857-864.
- 14. Marchese L., Maschmeyer T., Gianotti E., Coluccia S. and Thomas J. M., Probing the titanium sites in Ti-MCM-41 by diffuse reflectance and photoluminescence UV-Vis spectroscopy, *J.*

Phys. Chem. B 101 (1997) pp. 8836-8838.

- 15. Tatsumi T., Koyano K. A. and Igarashi N., Remarkable activity enhancement by trimethylsilylation in oxidation of alkenes and alkanes with H₂O₂ catalyzed by titanium-containing mesoporous molecular sieves, *Chem. Commun* (1998) pp. 325-326.
- Corma A., Domine M., Gaona J. A., Jorda J. L., Navarro M. T., Rey F., Perez-Pariente J., Tsuji J., McCulloch B. and Nemeth L. T., Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41, *Chem. Commun.* (1998) pp. 2211-2212.
- Corma A., Jorda J. L., Navarro M. T. and Rey F., One step synthesis of highly active and selective epoxidation catalysts formed by organic-inorganic Ti containing mesoporous composites, *Chem. Commun.* (1998) pp. 1899-1900.
- Hagen A., Schueler K. and Roessner F., The performance of Ti-MCM-41 in aqueous media and after mechanical treatment studied by *in situ* XANES, UV/Vis and test reactions, *Micropor. Mesopor. Mater.* 51 (2002) pp. 23-33.
- Ahn W. S., Kim N. K. and Jeong S. Y., Synthesis, characterization and catalytic properties of Ti-containing mesoporous molecular sieves prepared using a fluorosilicon compound, *Catal. Today* 68 (2001) pp. 83-88.
- Luo Y., Lu G. Z., Guo Y. L. and Wang Y. S., Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: synthesis, characterization and catalysis, *Catal. Commun.* 3 (2002) pp. 129-134.
- Yu J. Q., Feng Z. C., Xu L., Li M. J., Xin Q., Liu Z. M. and Li C., Ti-MCM-41 synthesized from colloidal silica and titanium trichloride: synthesis, characterization and catalysis, *Chem. Mater.* 13 (2000) pp. 994-998.
- 22. Maschmeyer T., Rey F., Sanker G. and Thomas J. M., Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, *Nature* **378** (1995) pp. 159-162.
- 23. Kang K. K., Ahn W. S., Physiochemical properties of transition metal-grafted MCM-41 prepared using matallocene precursors, *J. Mol. Catal. A: Chemical* **159** (2000) pp. 403-410.
- 24. Ahn W. S., Lee D. H., Kim. T. J., Kim J. H., Seo G. and Ryoo R., Post-synthetic preparations of titanium-containing mesopore molecular sieves, *Appl. Catal. A: General* **181** (1999) pp. 39-49.
- 25. Attfiele M. P., Sankar G. and Thomas J. M., Facile heterogenisation of molecular Ti(OSiPh₃)₄ to form a highly active epoxidation catalyst, *Catal. Lett.* **70** (2000) pp. 155-158.
- Lang N., Delichere P. and Tuel A., Post-synthesis introduction of transition metals in surfactantcontaining MCM-41 materials, *Micropor. Mesopor. Mater.* 56 (2002) pp. 203-217.
- Krijnen S., Abbenhuis H. C. L., Hanssen R. W. J. N., van Hooff J. H. C. and van Santen R. A., Solid-phase immobilization of a new epoxidation catalyst, *Angew. Chem. Int. Ed.* 37 (1998) pp. 356-358.
- 28. Smet P., Riondato J., Pauwels T., Moens L. and Verdonck L., Preparation and characterization

of a titanium() silsesquioxane epoxidation catalyst anchored into mesoporous MCM-41, *Inorg. Chem. Commun.* **3** (2000) pp. 557-562.

- Newalkar B. L., Olanrewaju J. and Komarneni S., Direct synthesis of titanium-substituted mesoporous SBA-15 molecular sieve under microwave-hydrothermal conditions, *Chem. Mater.* 13 (2001) pp. 552-557.
- 30. Wu P. and Tatsumi T., Postsynthesis, Characterization and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15, *Chem. Mater.* **14** (2002) pp. 1657-1664.
- Calleja G., van Grieken R., Garcia R., Melero J.A. and Iglesias J., Preparation of titanium molecular species supported on mesostructured silica by different grafting methods, *J. Mol. Catal. A: Chemical* 182-183 (2002) pp. 215-225.
- Luan Z. H., Maes E. M., van der Heide P. A. W., Zhao D. U., Czernuszewicz R. S. and Kevan L., Incorporation of titanium into mesoporous silica molecular sieve SBA-15, *Chem. Mater.* 11 (1999) pp. 3680-3686.
- Jarupatrakorn J. and Don Tilley T., Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst Structure, *J. Am. Chem. Soc.* 124 (2002) pp. 8380-8388.
- Haskouri J. E., Cabrera S., Gutierrez M., Beltran-Porter A., Beltran-Porter D., Dolores Marcos M. and Amoros P., Very high titamium content mesoporous sillicas, *Chem. Commum.* (2001) pp. 309-310.
- Bagshaw S. A., Di Renzo F. and Fajula F., Preparation of metal-incorporated MSU mesoporous silica molecular sieves. Ti Incorporation via a totally non-ionic route, *Chem. Commum.* (1996) pp. 2209-2210.
- Aronson B. J., Blanford C. F. and Stein A., Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: synthesis and structural characterization, *Chem. Mater.* 9 (1997) pp. 2842-2851.
- Schrijnemakers K. and Vansant E. F., Preparation of titanium oxide supported MCM-48 by the designed dispersion of titanylacetylacetonate, *J. Porous Mater.* 8 (2001) pp.83-90.
- Shan Z., Gianotti E., Jansen J. C., Peters J. A., Marchese L. and Maschmeyer T., One-step synthesis of a highly active, mesoporous, titanium-containing silica by using bifunctional templating, *Chem. Eur. J.* 7 (2001) pp. 1437-1443.
- Xiao F. S., Han Y., Yu Y., Meng X. G., Yang M. and Wu S., Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites, *J. Am. Chem. Soc.* 124 (2002) pp. 888-889.
- 40. Reddy K. M., Moudrakovski I. and Sayari A., Synthesis of mesoporous vanadium silicate molecular sieves, J. Chem. Soc., *Chem. Commun.* (1994) pp. 1059-1060.

- Sayari A., Moudrakovski I. L., Ratcliffe C. I. Ripmeester J. A. and Preston K. F., Synthesis and spectroscopic studies of vanadium-containing molecular sieves. In synthesis of microporous material: zeolites, clays and nanostructure, ed. by Occelli M. L. and Kessler H. (Marcel Dekker, New York, 1996) pp. 417- 430.
- 42. Reddy J. S., Liu P. and Sayari A., Vanadium containing crystalline mesoporous molecular sieves leaching of vanadium in liquid phase reactions, *Appl. Catal. A: General* **148** (1996) pp. 7-21.
- 43. Neumann R. and Khenkin A. M., Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides, *Chem. Commun.* (1996) pp. 2643-2644.
- Pena M. L., Dejoz A., Fornes V., Rey F., Vazquez M. I. and Lopez Nieto J. M., V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase, *Appl. Catal. A* 209 (2001) pp. 155-164.
- 45. Dai L. X., Tabata K. J., Suzuki E. J. and Tatsumi T., Synthesis and characterization of V-SBA-1 cubic mesoporous molecular sieves, *Chem. Mater.* **13** (2001) pp. 208-212.
- 46. Gontier S. and Tuel A., Novel zirconium containing mesoporous silicas for oxidation reactions in the liquid phase, *Appl. Catal. A: General* **143** (1996) pp. 125-135.
- Ziolek M., Sobczak I., Nowak I., Decyk P., Lewandowska A. and Kujawa J., Nb-containing mesoporous molecular sieves a possible application in the catalytic processes, *Micropor. Mesopor. Mater.* 35-36 (2000) pp. 195-207.
- 48. Zhang Q. H., Wang Y., Itsuki S., Shishido T. and Takehira K., Fe-MCM-41 for selective epoxidation of styrene with hydrogen peroxide, *Chem. Lett.* (2001) pp. 946-947.
- 49. Sakthivel A. and Selvam P. Mesoporous (Cr)MCM-41: a mild and efficient heterogeneous catalyst for selective oxidation of cyclohexane, *J. Catal.* **211** (2002) pp. 134-143.
- Zhang Z. R., Suo J. H., Zhang X. M. and Li S. B., Synthesis, characterization and catalytic testing of W-MCM-41 mesoporous molecular sieves, *Appl. Catal. A: General* **179** (1999) pp. 11-19.
- Arends I. W. C. E. and Sheldon R. A., Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments, *Appl. Catal. A: General* 212 (2001) pp. 175-187.