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1. Off-line Analysis of Batch Process Data Using MKPCA

Batch processes are, by nature, a 3-way matrix ( X(/ x.J x K)) of data. In a typical
batch run, j=1,2,...,J variables are measured at k=1,2,...,K time intervals
throughout the batch. There exists similar data on several (i =1, 2, ...,/ ) similar process
batch runs. MPCA needs to unfold this matrix in order to obtain a two-way matrix, and

then performing PCA. Fig. 1 shows the unfolding method for MPCA. By subtracting

the mean of each column of unfolded matrix (X(/ xJK) ), the mean trajectory of each

variable is removed, so that major nonlinear behavior of the process can be eliminated
(Nomikos & MacGregor, 1994 and 1995). Once the matrix is mean centered and
variance scaled and PCA is performed, then the results from PCA are the loading
vectors and the calculated scores for each batch. The loading vectors have a weight for
each variable at each time, which gives the history of the process. In this paper, we used

KPCA instead of PCA to extract nonlinear structure of the unfolded matrix, X(/ x JK) .

A measure of the variation within the MKPCA model is given by Hotelling’s 7*

statistic. 7 is the sum of the normalized squared scores, and is defined as
T2:[tl,...,tp]A"[tl,...,tp]T (1)
where ¢, is obtained from KPCA, p is the number of PCs and A™' is the diagonal

matrix of the inverse of the variances associated with the retained principal components.

The confidence limit for 7° is obtained using the F-distribution.
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where / is the number of batches in the model, p the number of principal components,
and « significance level.

The measure of goodness of fit of a sample to the PCA model is the squared
prediction error (SPE), also known as the Q statistic. However, KPCA of Scholkopf,
Smola, and Miiller (1998) provides only nonlinear principal components and does not
consider any reconstruction method of the data in the feature space. So, there is a

problem to make a monitoring chart of SPE. In this paper, a simple calculation of SPE

in the feature space F' is suggested. Then SPE in the feature space is defined as

SPE =|0(x) -, (x| 3)

n p
where @ (x) = Ztkv . 1s the reconstructed with p principal components in the feature
k=1

space. Here, @(x) is identical to (i)n(x) = Ztkv . if p equals n where n is the number
k=1

of nonzero eigenvalues generated from Eq. (8) among N. Therefore, SPE is obtained

from the following equations.

SPE =|0(x)-d, (x)H2 =6, 0-, (x)H2
=0,(x)"D,(x)-20,(0)"D,(x)+D,(x) D, (x)

n n n )4 )4 p
r r r 3
:thvj Ztkvk—Zthvj Ztkvk+2tjvj Ztkvk 3)
Jj=1 k=1 Jj=1 k=1 Jj=1 k=1
— Lo, & SRR =P
DRI DNNEDRIED NS
=l Jj=1 Jj=1 j=1 J=1
where V_/.Tvk =1whenj =k, vavk = 0 otherwise.

In oft-line batch analysis, the confidence limit for the SPE can be computed from its



approximate distribution
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where ¢, is the standard normal deviate corresponding to the upper (1-« ) percentile,

d
A, is the eigenvalue associated with the /™ loading vector, 0, = Zl" j for i=123

Jj=a+l

and 5, =1 —% (Nomikos & MacGregor, 1995).
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2. Procedure for On—line Batch Monitoring using Multiway KPCA

A. FYLYEH T LPEE (NOC model)

1) Acquire normal operating data X(/xJ x K) and unfold it batch-wise X(/ x JK).
2) The data X(/xJK) are normalized using the mean and standard deviation of each
variable at each time in the batch cycle over all batches.

3) Given a set of JK-dimensional scaled normal operating data x, e R, k=1,...,1,

we compute the kernel matrix K e R™ by [K]l.j =K, = <CD(X,-),CD(XJ.)> =[k(x;,x;)].

1
4) Carry out mean centering in the feature space for Z(D(x )=0,
k=1

K=K-1,K-K1,+1,K1, (5)



1
5) Carry out variance scaling in the feature space for %Z(Dscl (x,)’ =1
k=l
- K
K, 6 =——= (6)
trace(K)
-1

6) Solve the eigenvalue problem /1o =K _o and normalize a, such that

1
<Gk,ak>27k.

7) For normal operating data x at each normal batch, we extract a nonlinear

component via

= (Vo8 (0) = ia @, (x), P, (%)) = ia Faxe) ()

where &)SC, (x) is the mean centered and variance scaled feature vector of ®(x).

8) Calculate the monitoring statistics (7° and SPE) of normal operating data at each
batch

9) Determine control limits of 7° and SPE charts

B. dAI2t & ZL/IE/E (On-line Monitoring)

1) For new batch data until time &, X, (kxJ), unfold it to x,T (1x Jk) . Scale it with the

mean and the variance obtained at step 2) of the modeling procedures.

2) Anticipate the future observations by the method mentioned earlier

3) Given JK-dimensional scaled test data x, € R, we compute the kernel vector

k, e R™ by [k,]j =[k,(x,,x,)] where x, is the scaled normal operating data used

in step 3) of the modeling procedures: x; € R™, j=1..,I.



4) The test kernel vector k, is mean centered as follows;
k, =k, -1, K-kl +1 K1, (8)

where K and 1, are obtained from step 4) of the modeling procedures and
1 :l[l 1]e R™
7l .

5) The mean centered kernel vector Et is variance scaled

Ny Kk
k sel : (9)
trace(K)

I1-1
6) For the test data x,, we extract a nonlinear component via

~ 1 ~ ~
tk :<Vk’q)scl(xt)> = Za f’c<®scl(xi)7q)scl(x > Za tvcl(xﬂ t (10)
i=1

7) Calculate the monitoring statistics (7° and SPE ) of test data
8) Monitor whether 7° or SPE exceeds its control limit calculated in the modeling

procedure.



