
National Institute of Advanced Industrial Science and Technology

A Complete Scenario on Grid
- How to build, program, use a Grid -

Yoshio Tanaka
Grid Technology Research Center, AIST

Background

Grid is going to be practical/production level
Key technologies have been standardized

GSI, OGSA, etc.
Grid middlewares become mature

Globus Toolkit, UNICORE, Condor, etc.
OK, Let’s use Grid ! But…

Do you have a Grid testbed?
Is your application Grid-enabled?
How do you develop Grid-enabled
applications?

MPI is the only programming model?

Tutorial Goal
Enable attendees to understand

how to build a Grid testbed using the Globus Toolkit
version 2 (GT2)

sociological issues
design, implementation and management

how to develop and run Grid applications on Grid
testbeds

development and execution of Grid applications using
Globus-based GridRPC system
MPI is not the only programming model on the Grid !

Through the above two major topics…
how each component of the GT2 works on a
computational Grids.

introduction of the Globus Toolkit from a point of view of
users

Outline
I. Review of the GT2 (10min)

I. Common software infrastructure for both
building and using Grids

II. How to build a Grid (40min)
I. general issues
II. use the ApGrid Testbed as an example

III. How to program on a Grid (60min)
I. Programming on the Grid using GridRPC
II. use Ninf-G as a sample GridRPC system

IV. How to run a Grid application (20min)
I. Experiences on running climate simulation on the

ApGrid Testbed
V. Summary (10min)

I. What has been done? What hasn’t?

National Institute of Advanced Industrial Science and Technology

PART I
Review of the GT2

several slides are by courtesy of the Globus Project

What is the Globus Toolkit?

A Toolkit which makes it easier to develop
computational Grids
Developed by the Globus Project Developer
Team (ANL, USC/ISI)
Defacto standard as a low level Grid
middleware

Most Grid testbeds are using the Globus
Toolkit

Latest version is 2.4
Alpha version of the GT3 is available

Based on OGSA. Different architecture with
GT2

Some notes on the Globus Toolkit (1/2)

Globus Toolkit is not providing a framework for
anonymous computing and mega-computing

Users are required
to have an account on servers to which the user would be
mapped when accessing the servers
to have a user certificate issued by a trusted CA
to be allowed by the administrator of the server

Complete differences with mega-computing
framework such as SETI@HOME

Some notes on the Globus Toolkit (2/2)

Do not think that the Globus Toolkit solves all problems on
the Grid.

The Globus Toolkit is a set of tools for the easy
development of computational Grids and middleware

The Globus Toolkit includes low-level APIs and several UNIX
commands
It is not easy to develop application programs using Globus
APIs. High-level middleware helps application development.

Several necessary functions on the computational Grids
are not supported by the Globus Toolkit.

Brokering, Co-scheduling, Fault Managements, etc.
Other supposed problems

using IP-unreachable resources (private IP addresses +
MPICH-G2)
scalability (ldap, maintenance of grid-mapfiles, etc.)

GT2 components

GSI: Single Sign On + delegation
MDS: Information Retrieval

Hierarchical Information Tree (GRIS+GIIS)
GRAM: Remote process invocation

Three components:
Gatekeeper
Job Manager
Queuing System (pbs, sge, etc.)

Data Management:
GridFTP
Replica management
GASS

Security
GSI

GSI: Grid Security Infrastructure

Authentication and authorization using
standard protocols and their extensions.

Authentication: Identify the entity
Authorization: Establishing rights

Standards
PKI, X.509, SSL,…

Extensions: Single sign on and delegation
Entering pass phrase is required only once
Implemented by proxy certificates

user

Communication*

Remote file
access requests*

remote process
creation requests*

Requirements for security

server A server B

* with mutual authentication

Single
Sign on

Delegatio
n

Proxy Certificate

User Certificate
Subject DN
Public Key
Issuer (CA)
Digital Signature

grid-proxy-init

Proxy Certificate
Subject DN/Proxy
(new) public key
(new) private key

(not encrypted)
Issuer (user)
Digital Signature (user)

sign

User Certificate
Subject DN
Public Key
Issuer (CA)
Digital Signature

Identity of the user

private key
(encrypted)

Requirements for users

Obtain a certificate issued by a trusted CA
Globus CA can be used for tests
Run another CA for production run. The
certificate and the signing policy file of the CA
should be put on an appropriate directory
(/etc/grid-security/certificates).

Run grid-proxy-init command in advance
Will generate a proxy certificate. Enter PEM
pass phrase for the decryption of a private key.
A proxy certificate will be generated /tmp
directory

Requirements for system admins.

CA certificate and the signing policy file are
used for verifying end entity’s certificate.

Those files must be placed in /etc/grid-
security/certificates/ directory
example:

If the server certificate is issued by AIST GTRC
CA, the certificate and the signing policy file of
AIST GTRC CA must be put in /etc/grid-
security/certificates/ on client machine.
If my certificate is issued by KISTI CA, the
certificate and the signing policy file of KIST CA
must be put in /etc/grid-security/certificates/
on all server machines.

National Institute of Advanced Industrial Science and Technology

PART II
How to build a Grid

many slides are by courtesy of Bill Johnston (NASA)

Building a Multi-site,
Computational and Data Grid

Like networking, successful Grids involve
almost as much sociology as technology.
The first step is to establish the
mechanisms for promoting cooperation and
mutual technical support among those who
will build and manage the Grid.
Establish an Engineering Working Group
that involves the Grid deployment teams at
each site

schedule regular meetings / telecons
involve Globus experts in these meetings
establish an EngWG archived email list

Grid Resources

Identify the computing and storage resources to be
incorporated into your Grid

be sensitive to the fact that opening up systems to
Grid users may turn lightly or moderately loaded
systems into heavily loaded systems
batch schedulers may have to be installed on
systems that previously did not use them in order to
manage the increased load
carefully consider the issue of co-scheduling!

many potential Grid applications need this
only a few available schedulers provide it (e.g. PBSPro)
this is an important issue for building distributed systems

Build the Initial Testbed
Plan for a Grid Information Service / Grid
Information Index Server (GIS/GIIS) at each
distinct site with significant resources

this is important in order to avoid single points of
failure

if you depend on an MDS/GIIS at some other site site, and
it becomes un-available, you will not be able to examine your
local resources

The initial testbed GIS/MDS model can be
independent GIISs at each site

in this model
Either cross-site searches require explicit knowledge of
each of the GIISs, which have to searched independently,
or
All resources cross-register in each GIIS

Build the Initial Testbed

Build Globus on test systems
use PKI authentication and certificates from
the Globus Certificate Authority, or some
other CA, issued certificates for this test
environment

Globus CA will expire on January 23, 2004.
can use the OpenSSL CA to issue your own certs
manually

validate the access to, and operation of the
GIS/GIISs at all sites

Preparing for the Transition to a
Prototype-Production Grid

There are a number of significant issues that have to be
addressed before going to even a pseudo production Grid

Policy and mechanism must be established for the Grid X.509
identity certificates
the operational model for the Grid Information Service must
be determined

who maintains the underlying data?
the model and mechanisms for user authorization must be
established

how are the Grid mapfiles managed?
your Grid resource service model must be established (more
later)
your Grid user support service model must be established
Documentation must be published

Trust Management

Trust results from clear, transparent, and
negotiated policies associated with identity
The nature of the policy associated with
identity certificates depends a great deal on
the nature of your Grid community

It is relatively easy to establish policy for
homogeneous communities as in a single
organization
It is very hard to establish trust for large,
heterogeneous virtual organizations involving
people from multiple, international
institutions

Trust Management (cont’d)
Assuming a PKI Based Grid Security Infrastructure
(GSI)
Set up, or identify, a Certification Authority to
issue Grid X.509 identity certificates to users and
hosts
Make sure that you understand the issues associated
the Certificate Policy / Certificate Practices (“CP”)
of the CA

one thing governed by CP is the “nature” of identity
verification needed to issue a certificate (this is a
primary factor in determining who will be willing to
accept your certificates as adequate authentication
for resource access)
changing this aspect of the CP could well mean not
just re-issuing all certificates, but requiring all users
to re-apply for certificates

Trust Management (cont’d)

Do not try and invent your own CP
The GGF is working on a standard set of CPs
We are trying to establish international
collaborations for Policy Management
Authority at the GGF.

DOE Science Grid, NASA IPG, EU Data Grid,
ApGrid, etc…
First BOF will be held at GGF9 (Chicago,
Oct.)

Establish and publish your Grid CP

PKI Based Grid Security Infrastructure (GSI)

Pay very careful attention to the subject namespace
the X.509 Distinguished Name (the full form of the certificate
subject name) is based on an X.500 style hierarchical
namespace
if you put institutional names in certificates, don’t use
colloquial names for institutions - consider their full
organizational hierarchy in defining the naming hierarchy
find out if anyone else in your institution, agency, university,
etc., is working on PKI (most likely in the administrative or
business units) - make sure that your names do not conflict
with theirs, and if possible follow the same name hierarchy
conventions
CAs set up by the business units of your organization
frequently do not have the right policies to accommodate Grid
users

PKI Based Grid Security Infrastructure (GSI)

Think carefully about the space of entities
for which you will have to issue certificates

Humans
Hosts (systems)
Services (e.g. GridFTP)
Security domain gateways (e.g. PKI to
Kerberos)

Each must have a clear policy and procedure
described in your CA’s CP/CPS

Preparing for the Transition to a
Prototype-Production Grid

Issue host certificates for all the resources
and establish procedures for installing them
Count on revoking and re-issuing all of the
certificates at least once before going
operational
Using certificates issued by your CA,
validate correct operation of the GSI/GSS
libraries, GSI ssh, and GSIftp / Gridftp at
all sites

The Model for the Grid Information System

Index servers
resources are typically named using the
components of their DNS name

advantage is that of using an established and managed
name space

must use separate “index” servers to define
different relationships among GIISs, virtual
organization, data collections, etc.

on the other hand, you can establish “arbitrary”
relationships within the collection of indexed objects

this is the approach favored by the Globus R&D
team

Local Authorization
Establish the conventions for the Globus mapfile

maps user Grid identities to system UIDs – this is
the basic local authorization mechanism for each
individual platform, e.g. compute and storage
establish the connection between user accounts on
individual platforms and requests for Globus
access on those systems
if your Grid users are to be automatically given
accounts on a lot of different systems, it may
make sense to centrally manage the mapfile and
periodically distribute it to all systems

however, unless the systems are administratively
homogeneous, a non-intrusive mechanism such as email to
the responsible sys admins to modify the mapfile is best

Community Authorization Service (CAS)

Site Security Issues
Establish agreements on firewall issues

Globus can be configured to use a restricted range
of ports, but it still needs several tens, or so
(depending on the level of usage of the resources
behind the firewall), in the mid 700s
A Globus “port catalogue” is available to tell what
each Globus port is used for

this lets you provide information that you site security
folks will likely want
should let you estimate how many ports have to be opened
(how many per process, per resource, etc.)

GIS/MDS also needs some ports open
CA typically uses a secure Web interface (port 443)

Develop tools/procedures to periodically check that
the ports remain open

Preparing for Users

Build and test your Grid incrementally
very early on, identify a test case distributed application that
requires reasonable bandwidth, and run it across as many widely
separated systems in your Grid as possible

try and find problems before your users do
design test and validation suites that exercise your Grid in the
same way that applications do

Establish user help mechanisms
Grid user email list and / or trouble ticket system
Web pages with pointers to documentation
a Globus “Quick Start Guide” that is modified to be specific to
your Grid, with examples that will work in your environment
(starting with a Grid “hello world” example)

The End of the Testbed Phase

At this point Globus, the GIS/MDS, and the
security infrastructure should all be
operational on the testbed system(s). The
Globus deployment team should be familiar
with the install and operation issues, and the
sys admins of the target resources should be
engaged.
Next step is to build a prototype-production
environment.

Moving from Testbed to Prototype Production Grid

Deploy and build Globus on at least two
production computing platforms at two
different sites.Establish the relationship
between Globus job submission and the local
batch schedulers (one queue, several queues,
a Globus queue, etc.)
Validate operation of this configuration

Take Good Care of the Users as Early as Possible

 Establish a Grid/Globus application specialist group
they should be running sample jobs as soon as the
testbed is stable, and certainly as soon as the
prototype-production system is operational
they should serve as the interface between users and
the Globus system administrators to solve Globus
related application problems

 Identify early users and have the Grid/Globus
application specialists assist them in getting jobs
running on the Grid

On of the scaling / impediment-to-use issues currently
is that the Grid services are relatively primitive (I.e.,
at a low level). The Grid Services and Web Grid
Services work currently in progress is trying to
address this.

National Institute of Advanced Industrial Science and Technology

Case Study

ApGrid Testbed

Outline

Brief introduction of ApGrid and the
ApGrid Testbed
Software architecture of the ApGrid
Testbed
Lessons learned

What is ApGrid?

Asia-Pacific Partnership for Grid Computing.
ApGrid focuses on

Sharing resources, knowledge, technologies
Developing Grid technologies
Helping the use of our technologies in create new
applications
Collaboration on each others work

Not only a Testbed
Not restricted to just a few developed countries,
neither to a specific network nor its related
group of researchers
Not a single source funded project

History of ApGrid

ApGrid Exhibition at HPCAsia
（Gold Coast, Australia)

2001 2002

ApGrid Exhibition / SC Global Event
at SC 2001 （Denver, USA)

1st ApGrid Core Meeting (Phuket, Thailand)

1st ApGrid Workshop (Tokyo, Japan)

2nd ApGrid Workshop / 2nd ApGrid Core Meeting
(Taipei, Taiwan)

2000

Kick-off meeting
(Yokohama, Japan)

Presentation at GF5
(Boston, USA)

ApGrid Exhibition
at SC 2002
（Baltimore, USA)

15 countries, 41 organizations (as of May, 2003)

2003

We are here

ApGrid Demo
at CCGrid 2003
(Tokyo, Japan)

ApGrid Testbed – features -

Truly multi national/political/institutional VO
not an application-driven testbed
differences in languages, culture, policy, interests,
…

Donation (Contribution) based
Not a single source funded for the development
Each institution contributes his own share
bottom-up approach

We can
have experiences on running international VO
verify the feasibility of this approach for the
testbed development

280

80

64

32
32

32

ApGrid Testbed: Status http://www.apgrid.org/

ApGrid Testbed – status and plans -

Resources
500 CPUs from more than 10 institution

Most resources are not dedicated to the ApGrid Testbed.
many AG nodes, 1 virtual venue server
Special devices (MEG, Ultra High Voltage
Microscope, etc.)

Going to be a production Grid
Most current participants are developers of Grid
middleware rather than application people
Should be used for running REAL applications

increase CPUs
keep it stable
provide documents

Design Policy

Security is based on GSI
Information service is provided by MDS

Use Globus Toolkit Ver.2 as a common
software infrastructure

Testbed Developments – Security Infrastructure -

Certificates and CAs
Users and resources have to have their certificates
issued by a trusted CA.
The ApGrid Testbed runs CAs and issues certificates
for users and resources.

ApGrid CA?
The ApGrid Testbed allows multiple root CAs.
Each country/organization/project may run its own CA
and these could be root CAs on the ApGrid Testbed.
Certificates, signing policy files of the ApGrid CAs are
put on the ApGrid home page and can be downloaded
via https access.
Planning to establish ApGrid PMA and collaborate with
other communities.

Testbed Developments – Information Services -

Based on MDS (GRIS/GIIS)

KR
JP

GRISes

GIIS

TW

ApGrid
GIIS

mds.apgrid.org

Requirements for users

obtain a user certificate
be permitted accesses to resources by the
resource providers

need to have an account and an entry to grid-
mapfile on each server

Put certificates of all CAs by which server
certificates are issued.

Requirements for resource providers

Install GT2 on every server
Decide your policy

which CA will be trusted?
to whom is your resource opened?
make limitations such as max job running time, etc.?
…

Give appropriate accounts and add entries to grid-
mapfile for the users

Possible policies:
Give accounts for all individuals
Give a common account for each institution

Accept job requests via the Globus Gatekeeper
Provide information via GRIS/GIIS
Push the sites’ GIIS to the ApGrid GIIS

How to contribute to the ApGrid Testbed

1. Install ApGrid Recommended Software
1. Configure GRIS/GIIS
2. Put trusted CA’s cert. and policy files

2. Provide Users’ Guide for ApGrid users
1. Resource information
2. How to get an account
3. Contact information
4. etc.

3. Administrative work
1. Create accounts
2. Add entries to grid-mapfile
3. etc.

ApGrid Testbed – Software Infrastructure -

Minimum Software: Globus Toolkit 2.2 (or later)
Security is based on GSI
Information Service is based on MDS

The ApGrid Recommended Package will include
GPT 2.2.5
Globus Toolkit 2.4.2
MPICH-G2 (MPICH 1.2.5.1)
Ninf-G 1.1.1
Iperf 1.6.5
SCMSWeb 2.1
+ installation tool

Configuration of GIIS
- Define name of the VO -

Add the following contents to
$GLOBUS_LOCATION/etc/grid-info-slapd.conf

database giis
suffix “Mds-Vo-name=AIST, o=Grid”
conf /usr/local/gt2/etc/grid-info-site-giis.conf
policyfile /usr/local/gt2/etc/grid-info-site-policy.conf
anonymousbind yes
access to * by * write

Need to change $GLOBUS_LOCATION/etc/grid-info-
site-policy.conf so that the GIIS can accept
registration from GRISes

Configuration of GRIS
- Example: Register to the ApGrid MDS -

Add the following contents to
$GLOBUS_LOCATION/etc/grid-info-resource-register.conf

dn: Mds-Vo-Op-name=register, Mds-Vo-name=ApGrid, o=Grid
regtype: mdsreg2
reghn: mds.apgrid.org
regport: 2135
regperiod: 600
type: ldap
hn: koume.hpcc.jp
port: 2135
rootdn: Mds-Vo-name=AIST, o=Grid
…

Lessons Learned
Difficulties caused by the bottom-up approach and the
problems on the installation of the Globus Toolkit.

Most resources are not dedicated to the ApGrid Testbed.
Site’s policy should be respected.
There were some requirements on modifying software
configuration, environments, etc.

Version up of the Globus Toolkit (GT1.1.4 -> GT2.0 -> GT2.2)
Apply patches, install additional packages
Build bundles using other flavors

Different requirements for the Globus Toolkit between users.
Middleware developers needs the newest one.
Application developers satisfy with using the stable (older) one.
It is not easy to catch up frequent version up of the Globus
Toolkit.

ApGrid software package should solve some of these problems

Lessons Learned (cont’d)

Scalability problems in LDAP
sizelimit should be specified in grid-info-
slapd.conf (default is 500)
GIIS lookup takes several ten seconds

Well known problem 
Firewall, private IP addresses…

Human interaction is very important
have timely meetings/workshops as well as
regular VTCs.
understand and respect each other’s culture,
interests, policy, etc.

For more info

Home Page http://www.apgrid.org/

Mailing Lists
Core Member ML core@apgrid.org
Tech. Contacts ML tech-contacts@apgrid.org
(approved members)

ML for discussion discuss@apgrid.org
(open for anyone)

National Institute of Advanced Industrial Science and Technology

PART III
How to program on a Grid

many slides are by courtesy of Bill Johnston (NASA)

Layered Programming Model/Method

Difficult
but flexible

Easy but
inflexiblePortal / PSE

GridPort, HotPage,
GPDK, Grid PSE Builder,
etc…

High-level Grid Middleware
MPI (MPICH-G2, PACX-MPI, …)
GridRPC (Ninf-G, NetSolve, …)

Low-level Grid Middleware
Globus Toolkit

Primitives
Socket, system calls, …

MPI

Some Significant Grid Programming
Models/Systems

Data Parallel
MPI - MPICH-G2, Stampi, PACX-MPI, MagPie

Task Parallel
GridRPC – Ninf, Netsolve, Punch…

Distributed Objects
CORBA, Java/RMI, …

Data Intensive Processing
DataCutter, Gfarm, …

Peer-To-Peer
Various Research and Commercial Systems

UD, Entropia, Parabon, JXTA, …
Others…

Utilization of remote
supercomputers

user
Internet

① Call remote
procedures

② Notify results

Call remote libraries

Large scale computing utilizing multiple supercomputers on the Grid

GridRPC: RPC based Programming model

GridRPC: RPC “tailored” for the Grid

Medium to Coarse-grained calls
Call Duration < 1 sec to > week

Task-Parallel Programming on the Grid
Asynchronous calls, 1000s of scalable parallel calls

Large Matrix Data & File Transfer
Call-by-reference, shared-memory matrix
arguments

Grid-level Security (e.g., Ninf-G with GSI)
Simple Client-side Programming & Management

No client-side stub programming or IDL
management

Other features…

GridRPC (cont’d)
v.s. MPI

Client-server programming is suitable for task-
parallel applications.
Does not need co-allocation
Can use private IP address resources if NAT is
available (at least when using Ninf-G)
Better fault tolerancy

Activities at the GGF GridPRC WG
Define standard GridRPC API; later deal with
protocol
Standardize only minimal set of features; higher-
level features can be built on top
Provide several reference implementations

Ninf-G, NetSolve, …

Typical Scenario: Optimization Problems and
Parameter Study on Cluster of Clusters

Structural Optimization Vehicle Routing Problem
Slide by courtesy of Prof. Fujisawa

rpc rpc
rpc

Sample Architecture and Protocol of GridRPC
System – Ninf -

Client

Ninf Server

Invoke
Executable

Connect back

IDL file Numerical
Library

IDL Compiler

Register
Remote Library

Executable

GenerateInterface
Request

Interface
Reply

Server side
Client side

Call remote library
Retrieve interface
information
Invoke Remote
Library Executable
It Calls back to the
client

Server side setup
 Build Remote Library
Executable

 Register it to the Ninf
Server

fork

GridRPC: based on Client/Server model

Server-side setup
Remote libraries must be installed in advance

Write IDL files to describe interface to the
library
Build remote libraries

Syntax of IDL depends on GridRPC systems
e.g. Ninf-G and NetSolve have different IDL

Client-side setup
Write a client program using GridRPC API
Write a client configuration file
Run the program

GridRPC API
API for client programming

The GridRPC API

Provide standardized, portable, and simple
programming interface for Remote Procedure Call
Attempt to unify client access to existing grid
computing systems (such as NetSolve and Ninf-G)
Working towards standardization through the GGF
GridRPC WG

Initially standardize API; later deal with protocol
Standardize only minimal set of features; higher-
level features can be built on top
Provide several reference implementations

Not attempting to dictate any implementation details

Rough steps for RPC
Initialize

Create a function handle
Abstraction to a remote library

RPC
Call remote procedure

grpc_function_handle_t handle;

grpc_function_handle_init(
&handle, host, port, “lib_name”);

grpc_call(&handle, args…);
とか

grpc_call_async(&handle, args…);

grpc_initialize(config_file);

The GridRPC API - Fundamentals

Function handle – grpc_function_handle_t
Represents a mapping from a function name to an
instance of that function on a particular server
Once created, calls using a function handle always go
to that server

Session ID – grpc_sessionid_t
Identifier representing a previously issued non-
blocking call
Allows checking status, canceling, waiting for, or
getting the error code of a non-blocking call

Error and Status code – grpc_error_t
Represents all error and return status codes from
GridRPC functions

Initializing and Finalizing

grpc_error_t grpc_initialize(char *config_file_name)
Reads config_file_name and initializes the system
Initialization is system dependent
Must be called before any other GridRPC calls
Return value:

GRPC_OK if successful
GRPC_ERROR if not successful

grpc_error_t grpc_finalize()
Releases any resources being used by GridRPC
Return value:

GRPC_OK if successful
GRPC_ERROR if not successful

Function Handle Management

grpc_error_t grpc_function_handle_default(
grpc_function_handle_t *handle,
char *func_name)

Creates a function handle for function
func_name using the default server
Server selection is implementation-
dependent

grpc_error_t grpc_function_handle_init(
grpc_function_handle_t *handle,
char *host_port_str,
char *func_name)

Allows explicitly specifying the server in
host_name and port

Function Handle Management (cont.)

grpc_error_t grpc_function_handle_destruct(
grpc_function_handle_t *handle)

Release the memory allocated for handle
grpc_error_t grpc_function_handle_t
*grpc_get_handle(

grpc_function_handle_t * handle,
grpc_sessionid_t sessionId)

Returns the function handle which
corresponds to sessionId

GridRPC Call Functions

grpc_error_t grpc_call(
grpc_function_handle_t *handle, …)

Blocking remote procedure call
grpc_error_t grpc_call_async(

grpc_function_handle_t *handle,
grpc_sessionid_t *sessionID,
…)

Non-blocking remote procedure call
session ID (positive integer) is stored in sessionID
session ID can be checked for completion later

GridRPC Call Functions Using ArgStack

grpc_error_t grpc_call_argstack(
grpc_function_handle_t *handle,
grpc_arg_stack *stack)

Blocking call using argument stack
Returns GRPC_OK on success, GRPC_ERROR on
failure

grpc_error_t grpc_call_argstack_async(
grpc_function_handle_t *handle,
grpc_sessionid_t *sessionID,
grpc_arg_stack *stack)

Non-blocking call using argument stack
session ID (positive integer) is stored in sessionID
Session ID can be checked for completion later

Asynchronous Session Control Functions

grpc_error_t grpc_probe(
grpc_sessionid_t sessionID)
Checks whether call specified by sessionID has
completed
Returns “session done” or “session not done”

grpc_error_t grpc_probe_or(
grpc_sessionid_t *idArray,
size_t length,
grpc_sessionid_t *idPtr)
Checks the array of sessionIDs for any GridRPC calls
that have completed
Returns exactly one session ID in idPtr if any calls have
completed

grpc_error_t grpc_cancel(grpc_sessionid_t sessionID)
Cancels a previous call specified by sessionID

grpc_error_t grpc_cancel_all()
Cancels all outstanding sessions

Asynchronous Wait Functions

grpc_error_t grpc_wait(
grpc_sessionid_t sessionID)

Wait for the specified non-blocking requests to
complete
Blocks until the specified non-blocking requests to
complete

grpc_error_t grpc_wait_and(
grpc_sessionid_t *idArray, size_t length)

Wait for all of the specified non-blocking
requests in a given set (idArray) have
length is the number of elements in idArray

Asynchronous Wait Functions (cont.)

grpc_error_t grpc_wait_or(
grpc_sessionid_t *idArray,
size_t length,
grpc_sessionid_t *idPtr)

Wait for any of the specified non-blocking requests
in a given set (idArray) have completed
length is the number of elements in idArray
On return, idPtr contains the session ID of the call
that completed

grpc_error_t grpc_wait_all()
Wait for all previously issued non-blocking requests
have completed.

Asynchronous Wait Functions (cont.)

grpc_error_t grpc_wait_any(
grpc_sessionid_t *idPtr)

Wait for any previously issued non-blocking
request has completed
On return, idPtr contains the session ID of
the call that completed
Returns GRPC_OK if the call (returned in
idPtr) succeeded, otherwise returns
GRPC_ERROR
Use grpc_get_error() to get the error value
for a given session ID

Error Reporting Functions

char * grpc_error_string(
grpc_error_t error_code)

Gets the error string given a numeric error
code
For error_code we typically pass in the
global error value grpc_errno

Argument Stack Functions

grpc_error_t grpc_arg_stack_create(
grpc_arg_stack_t *stack,
size_t maxsize)

Creates a new argument stack with at
most maxsize entries

grpc_error_t grpc_arg_stack_destruct(
grpc_arg_stack_t *stack)

Frees resources associated with the
argument stack

Argument Stack Functions (cont.)

grpc_error_t grpc_stack_push(
grpc_arg_stack_t *stack,
void *arg)

Pushes arg onto stack
grpc_error_t grpc_stack_pop(

grpc_arg_stack_t *stack)
Returns the top element of stack or NULL if the stack
is empty

Arguments are passed in the order they were pushed
onto the stack. For example, for the call F(a,b,c),
the order would be:

Push(a); Push(b); Push(c);

Data Parallel Application

Call parallel libraries (e.g. MPI apps).
Backend “MPI” or
Backend “BLACS”
should be specified
in the IDL

Parallel Computer

Parallel Numerical Libraries
Parallel Applications

Task Parallel Application

Parallel RPCs using asynchronous call.

Server

Server

Server

Server

Task Parallel Application

Asynchronous Call

Waiting for reply

grpc_call_async(...);
grpc_call_async

Client ServerA ServerB

grpc_call_async

grpc_wait_all
grpc_wait(sessionID);
grpc_wait_all();
grpc_wait_any(idPtr);
grpc_wait_and(idArray, len);
grpc_wait_or(idArray, len, idPtr);
grpc_cancel(sessionID);

Various task parallel
programs spanning
clusters are easy to write

National Institute of Advanced Industrial Science and Technology

Ninf-G

Overview and Architecture

Ninf Project
Started in 1994
Collaborators from various organizations

AIST
Satoshi Sekiguchi, Umpei Nagashima, Hidemoto Nakada,
Hiromitsu Takagi, Osamu Tatebe, Yoshio Tanaka,
Kazuyuki Shudo

University of Tsukuba
Mitsuhisa Sato, Taisuke Boku

Tokyo Institute of Technology
Satoshi Matsuoka, Kento Aida, Hirotaka Ogawa

Tokyo Electronic University
Katsuki Fujisawa

Ochanomizu University
Atsuko Takefusa

Kyoto University
Masaaki Shimasaki

Brief History of Ninf/Ninf-G

1994 1997 2000 2003

Ninf project
launched

Release Ninf
version 1

Start collaboration
with NetSolve team

Ninf-G
development

Release Ninf-G
version 0.9

Release Ninf-G
version 1.0

Standard GridRPC
API proposed

1st GridRPC WG
at GGF7

What is Ninf-G?
A software package which supports
programming and execution of Grid
applications using GridRPC.
Ninf-G includes

C/C++, Java APIs, libraries for software
development
IDL compiler for stub generation
Shell scripts to

compile client program
build and publish remote libraries

sample programs
manual documents

Ninf-G: Features At-a-GlanceNinf-G: Features At-a-Glance

Ease-of-use, client-server, Numerical-
oriented RPC system
No stub information at the client side
User’s view: ordinary software library

Asymmetric client vs. server
Built on top of the Globus Toolkit

Uses GSI, GRAM, MDS, GASS, and Globus-IO
Supports various platforms

Ninf-G is available on Globus-enabled
platforms

Client APIs: C/C++, Java

Sample Architecture Review

Client API
Provides users easy
to use API

Remote Library
Executable

Execute numerical
operation

Ninf Server
Provides library
interface info.
Invokes remote
library executable

IDL compiler
Compiles Interface
description
Generates 'stub
main' for remote
library executable
Helps to link the
executable

Ninf Register driver
Registers remote
library executable
into the Server

Architecture of Ninf

Client

Ninf Server

Invoke
Executable

Connect back

IDL file Numerical
Library

IDL Compiler

Register
Remote Library

Executable

GenerateInterface
Request

Interface
Reply

Server sideClient side

fork

Architecture of Ninf-G

Client

GRAM

Invoke
Executable

Connect back

IDL file Numerical
Library

IDL Compiler

Remote Library
Executable

GenerateInterface
Request

Interface
Reply

Server sideClient side

fork

GRIS Interface Information
LDIF Fileretrieve

Globus-IO

National Institute of Advanced Industrial Science and Technology

Ninf-G

How to Build Remote Libraries
- server side operations -

Ninf-G remote libraries

Ninf-G remote libraries are implemented as
executable programs (Ninf-G executables)
which

contains stub routine and the main routine
will be spawned off by GRAM

The stub routine handles
communication with clients and Ninf-G
system itself
argument marshalling

Underlying executable (main routine) can be
written in C, C++, Fortran, etc.

How to build Ninf-G remote libraries (1/3)
Write an interface information using Ninf-G
Interface Description Language (Ninf-G IDL).
Example:
Module mmul;
Define dmmul (IN int n,

IN double A[n][n],
IN double B[n][n],
OUT double C[n][n])

Require “libmmul.o”
Calls “C” dmmul(n, A, B, C);

Compile the Ninf-G IDL with Ninf-G IDL compiler

% ns_gen <IDL_FILE>

ns_gen generates stub source files and a makefile
(<module_name>.mak)

How to build Ninf-G remote libraries (2/3)

Compile stub source files and generate Ninf-G
executables and LDIF files (used to register
Ninf-G remote libs information to GRIS).

% make –f <module_name>.mak

Publish the Ninf-G remote libraries

% make –f <module_name>.mak install

This copies the LDIF files to
${GLOBUS_LOCATION}/var/gridrpc

How to build Ninf-G remote libraries (3/3)

GRIS
<module>.mak

Ninf-G IDL file
<module>.idl

Ninf-G IDL file
<module>.idl

ns_gen

_stub_goo.c

_stub_goo

_stub_bar.c

_stub_bar

_stub_foo.c

_stub_foo

Library program
libfoo.a

Library program
libfoo.a

<module>::goo.ldif
<module>::bar.ldif

<module>::foo.ldif

GRAM

make –f <module>.mak

Ninf-G IDL Statements (1/2)
Module module_name

specifies the module name.
CompileOptions “options”

specifies compile options which should be used in the
resulting makefile

Library “object files and libraries”
specifies object files and libraries

FortranFormat “format”
provides translation format from C to Fortran.
Following two specifiers can be used:

%s: original function name
%l: capitalized original function name

Example:
FortranFormat “_%l_”;
Calls “Fortran” fft(n, x, y);

will generate function call
FFT(n, x, y);

in C.

Ninf-G IDL Statements (2/2)

Globals { … C descriptions }
declares global variables shared by all functions

Define routine_name (parameters…)
[“description”]
[Required “object files or libraries”]
[Backend “MPI”|”BLACS”]
[Shrink “yes”|”no”]
{{C descriptions} |
Calls “C”|”Fortran” calling sequence}

declares function interface, required libraries and
the main routine.
Syntax of parameter description:
[mode-spec] [type-spec] formal_parameter
[[dimension [:range]]+]+

Syntax of parameter description (detailed)
mode-spec: one of the following

IN: parameter will be transferred from client to server
OUT: parameter will be transferred from server to client
INOUT: at the beginning of RPC, parameter will be transferred
from client to server. at the end of RPC, parameter will be
transferred from server to client
WORK: no transfers will be occurred. Specified memory will be
allocated at the server side.

type-spec should be either char, short, int, float, long,
longlong, double, complex, or filename.
For arrays, you can specify the size of the array. The size
can be specified using scalar IN parameters.

Example:
IN int n, IN double a[n]

Sample Ninf-G IDL (1/2)Sample Ninf-G IDL (1/2)

Matrix Multiply

Module matrix;

Define dmmul (IN int n,
IN double A[n][n],
IN double B[n][n],
OUT double C[n][n])

“Matrix multiply: C = A x B“
Required “libmmul.o”
Calls “C” dmmul(n, A, B, C);

Module matrix;

Define dmmul (IN int n,
IN double A[n][n],
IN double B[n][n],
OUT double C[n][n])

“Matrix multiply: C = A x B“
Required “libmmul.o”
Calls “C” dmmul(n, A, B, C);

Sample Ninf-G IDL (2/2)Sample Ninf-G IDL (2/2)

ScaLAPACK (pdgesv)
Module SCALAPACK;

CompileOptions “NS_COMPILER = cc”;
CompileOptions “NS_LINKER = f77”;
CompileOptions “CFLAGS = -DAdd_ -O2 –64 –mips4 –r10000”;
CompileOptions “FFLAGS = -O2 -64 –mips4 –r10000”;
Library “scalapack.a pblas.a redist.a tools.a libmpiblacs.a –lblas –lmpi –lm”;

Define pdgesv (IN int n, IN int nrhs, INOUT double global_a[n][lda:n], IN int lda,
INOUT double global_b[nrhs][ldb:n], IN int ldb, OUT int info[1])

Backend “BLACS”
Shrink “yes”
Required “procmap.o pdgesv_ninf.o ninf_make_grid.of Cnumroc.o descinit.o”
Calls “C” ninf_pdgesv(n, nrhs, global_a, lda, global_b, ldb, info);

Module SCALAPACK;

CompileOptions “NS_COMPILER = cc”;
CompileOptions “NS_LINKER = f77”;
CompileOptions “CFLAGS = -DAdd_ -O2 –64 –mips4 –r10000”;
CompileOptions “FFLAGS = -O2 -64 –mips4 –r10000”;
Library “scalapack.a pblas.a redist.a tools.a libmpiblacs.a –lblas –lmpi –lm”;

Define pdgesv (IN int n, IN int nrhs, INOUT double global_a[n][lda:n], IN int lda,
INOUT double global_b[nrhs][ldb:n], IN int ldb, OUT int info[1])

Backend “BLACS”
Shrink “yes”
Required “procmap.o pdgesv_ninf.o ninf_make_grid.of Cnumroc.o descinit.o”
Calls “C” ninf_pdgesv(n, nrhs, global_a, lda, global_b, ldb, info);

National Institute of Advanced Industrial Science and Technology

Ninf-G

How to call Remote Libraries
- client side operations -

(Client) User’s Scenario

Write client programs using GridRPC API
Compile and link with the supplied Ninf-G
client compile driver (ns_client_gen)
Write a configuration file in which runtime
environments can be described
Run grid-proxy-init command
Run the program

Compile and run

Compile the program using ns_client_gen command.

% ns_client_gen –o myapp app.c

Before running the application, generate a proxy
certificate.

% grid-proxy-init

When running the application, client configuration
file must be passed as the first argument.

% ./myapp config.cl [args…]

Client Configuration File (1/2)
Specifies runtime environments.
Available attributes:

host
specifies client’s hostname (callback contact)

port
specifies client’s port number (callback contact)

serverhost
specifies default server’s hostname

ldaphost
specifies hostname of GRIS/GIIS

ldapport
specifies port number of GRIS/GIIS (default: 2135)

vo_name
specifies Mds-Vo-Name for querying GIIS (default: local)

jobmanager
specifies jobmanager (default: jobmanager)

Client Configuration File (2/2)
Available attributes (cont’d):

loglevel
specifies log leve (0-3, 3 is the most detail)

redirect_outerr
specifies whether stdout/stderr are redirect to the client side
(yes or no, default: no)

forkgdb, debug_exe
enables debugging Ninf-G executables using gdb at server side
(TRUE or FALSE, default: FALSE)

debug_display
specifies DISPLAY on which xterm will be opened.

debug_xterm
specifies absolute path of xterm command

debug_gdb
specifies absolute path of gdb command

Sample Configuration File

call remote library on UME cluster
serverhost = ume.hpcc.jp

grd jobmanager is used to launch jobs
jobmanager = jobmanager-grd

query to ApGrid GIIS
ldaphost = mds.apgrid.org
ldapport = 2135
vo_name = ApGrid

get detailed log
loglevel = 3

call remote library on UME cluster
serverhost = ume.hpcc.jp

grd jobmanager is used to launch jobs
jobmanager = jobmanager-grd

query to ApGrid GIIS
ldaphost = mds.apgrid.org
ldapport = 2135
vo_name = ApGrid

get detailed log
loglevel = 3

Examples

Ninfy the existing library
Matrix multiply

Ninfy task-parallel program
Calculate PI using a simple Monte-Carlo
Method

Matrix Multiply

Server side
Write an IDL file
Generate stubs
Register stub information to GRIS

Client side
Change local function call to remote
library call
Compile by ns_client_gen
write a client configuration file
run the application

Matrix Multiply - Sample Code -

void mmul(int n, double * a,
double * b, double * c) {

double t;
int i, j, k;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {
t = 0;
for (k = 0; k < n; k++){

t += a[i * n + k] * b[k * n + j]; }
c[i*N+j] = t;

}}}

The matrix do not itself embody size as type
info.

Matrix Multiply- Server Side (1/3) -

Write IDL file describing the interface
information (mmul.idl)

Module mmul;
Define mmul(IN int N,

IN double A[N*N],
IN double B[N*N],
OUT double C[N*N])

“Matrix Multiply: C = A x B"
Required "mmul_lib.o"
Calls "C" mmul(N, A, B, C);

Generate stub source and compile it

> ns_gen mmul.idl
> make -f mmul.mak

mmul.idl ns_gen mmul.mak

_stub_mmul.c

mmul_lib.o cc _stub_mmul

Matrix Multiply - Server Side (2/3) -

mmul::mmul.ldif

Matrix Multiply - Server Side (3/3) -

Regisgter stub information to GRIS

> make –f mmul.mak install

dn: GridRPC-Funcname=mmul/mmul, Mds-Software-deployment=GridRPC-Ninf-G, __ROO
T_DN__
objectClass: GlobusSoftware
objectClass: MdsSoftware
objectClass: GridRPCEntry
Mds-Software-deployment: GridRPC-Ninf-G
GridRPC-Funcname: mmul/mmul
GridRPC-Module: mmul
GridRPC-Entry: mmul
GridRPC-Path: /usr/users/yoshio/work/Ninf-G/test/_stub_mmul
GridRPC-Stub:: PGZ1bmN0aW9uICB2ZXJzaW9uPSIyMjEuMDAwMDAwIiA+PGZ1bmN0aW9
PSJtbXVsIiBlbnRyeT0ibW11bCIgLz4gPGFyZyBkYXRhX3R5cGU9ImludCIgbW9kZV90eXBl
PSJpbiIgPgogPC9hcmc+CiA8YXJnIGRhdGFfdHlwZT0iZG91YmxlIiBtb2RlX3R5cGU9Imlu
IiA+CiA8c3Vic2NyaXB0PjxzaXplPjxleHByZXNzaW9uPjxiaV9hcml0aG1ldGljIG5hbWU9

dn: GridRPC-Funcname=mmul/mmul, Mds-Software-deployment=GridRPC-Ninf-G, __ROO
T_DN__
objectClass: GlobusSoftware
objectClass: MdsSoftware
objectClass: GridRPCEntry
Mds-Software-deployment: GridRPC-Ninf-G
GridRPC-Funcname: mmul/mmul
GridRPC-Module: mmul
GridRPC-Entry: mmul
GridRPC-Path: /usr/users/yoshio/work/Ninf-G/test/_stub_mmul
GridRPC-Stub:: PGZ1bmN0aW9uICB2ZXJzaW9uPSIyMjEuMDAwMDAwIiA+PGZ1bmN0aW9
PSJtbXVsIiBlbnRyeT0ibW11bCIgLz4gPGFyZyBkYXRhX3R5cGU9ImludCIgbW9kZV90eXBl
PSJpbiIgPgogPC9hcmc+CiA8YXJnIGRhdGFfdHlwZT0iZG91YmxlIiBtb2RlX3R5cGU9Imlu
IiA+CiA8c3Vic2NyaXB0PjxzaXplPjxleHByZXNzaW9uPjxiaV9hcml0aG1ldGljIG5hbWU9

Matrix Multiply - Client Side (1/3) -

Modify source code
main(int argc, char ** argv){
grpc_function_handle_t handle;
…
grpc_initialize(argv[1]);
…
grpc_function_handle_default(&handle, “mmul/mmul”);
…
if (grpc_call(&handle, n, A, B, C) == GRPC_ERROR) {
…

}
…
grpc_function_handle_destruct(&handle);
grpc_finalize();

}

Matrix Multiply - Client Side (2/3) -

Compile the program by ns_client_gen

Write a client configuration file

> ns_client_gen -o mmul_ninf mmul_ninf.c

serverhost = ume.hpcc.jp
ldaphost = ume.hpcc.jp
ldapport = 2135
jobmanager = jobmanager-grd
loglevel = 3
redirect_outerr = no

Matrix Multiply - Client Side (3/3) -

Generate a proxy certificate

Run
> ./mmul_ninf config.cl

> grid-proxy-init

Task Parallel Programs
(Compute PI using Monte-Carlo Method)

Generate a large number of random points
within the square region that exactly
encloses a unit circle (1/4 of a circle)

PI = 4 p

Compute PI - Server Side -

Module pi;

Define pi_trial (
IN int seed,
IN long times,
OUT long * count)

"monte carlo pi computation"
Required "pi_trial.o"
{
long counter;
counter = pi_trial(seed, times);
*count = counter;

}

long pi_trial (int seed, long times) {
long l, counter = 0;

srandom(seed);
for (l = 0; l < times; l++) {

double x =
(double)random() / RAND_MAX;

double y =
(double)random() / RAND_MAX;

if (x * x + y * y < 1.0)
counter++;

}
return counter;

}

pi.idl pi_trial.c

Compute PI - Client Side-
#include "grpc.h"
#define NUM_HOSTS 8
char * hosts[] =

{"host00", "host01", "host02", "host03",
"host04", "host05", "host06", "host07"};

grpc_function_handle_t handles[NUM_HOSTS];

main(int argc, char ** argv){
double pi;
long times, count[NUM_HOSTS], sum;
char * config_file;
int i;
if (argc < 3){
fprintf(stderr,
"USAGE: %s CONFIG_FILE TIMES \n",
argv[0]);
exit(2);

}
config_file = argv[1];
times = atol(argv[2]) / NUM_HOSTS;

/* Initialize */
if (grpc_initialize(config_file)

!= GRPC_OK){
grpc_perror("grpc_initialize");
exit(2);

}

/* Initialize Function Handles */
for (i = 0; i < NUM_HOSTS; i++)
grpc_function_handle_init(&handles[i],

hosts[i], port, "pi/pi_trial");

for (i = 0; i < NUM_HOSTS; i++)
/* Asynchronous RPC */
if (gprc_call_async(&handles[i], i,

times, &count[i]) ==
GRPC_ERROR){

grpc_perror("pi_trial");
exit(2);

}
/* Wait all outstanding RPCs */
if (grpc_wait_all() == GRPC_ERROR){
grpc_perror("wait_all");
exit(2);

}
/* Display result */
for (i = 0, sum = 0; i < NUM_HOSTS; i++)
sum += count[i];

pi = 4.0 *
(sum / ((double) times * NUM_HOSTS));

printf("PI = %f\n", pi);
/* Finalize */
grpc_finalize();

}

National Institute of Advanced Industrial Science and Technology

PART IV
How to run a Grid application

Experiences on running climate simulation on the
ApGrid Testbed

What I did

1. Develop a Grid application
1. climate simulation using Ninf-G
2. giridified a legacy Fortran code using Ninf-G

2. Test accessibility to each site at Globus level
1. Test using globus-job-run

3. Install Ninf-G at each site
4. Test Ninf-G using a sample program
5. Install remote library for the climate simulation at

each site
6. Run the climate simulation (client program)
7. Increase resources and improve performance

Climate Simulation System

Gridifying the program enables quick response

Forcasting short to middle term climate change
Windings of jet streams
Blocking phenomenon of high atmospheric pressure

Barotropic S-model proposed by Prof. Tanaka
Legacy FORTRAN program

Simple and precise
Treating vertically averaged quantities
150 sec for 100 days prediction/1 simulation

Keep high precision over long period
Introducing perturbation for each simulation
Taking a statistical ensemble mean

Requires100 ~ 1000 simulations

1989/1/30-2/12

Gridify the original (seq.) climate simulation
 Dividing a program into two parts as a client-server system

 Client:
 Pre-processing: reading input data
 Post-processing: averaging results of ensembles

 Server
 climate simulation, visualize

Solving Equations
Reading data

Averaging results
Solving EquationsSolving Equations

S-model Program

Ninf-g

Ninf-g Ninf-g Ninf-g

Ninf-g
VIsualize

Establish
Connections

Throw
Initial Task

Retrieve
Result

Close
Connections

Client Servers

Throw
Next task

Behavior of the Program
Typical to task parallel applications

Establish connections to all nodes
Distribute a task to all nodes
Retrieve a result
Throw a next task

Cost for gridifying the program
Performed on a single computer

Eliminating common variables
Eliminating data dependence among server
processes

Seed for random number generation
Performed on a grid environment

Inserting Ninf-g functions
Creating self scheduling routine

Adding totally ~100 lines (< 10 % of the original program)
Finished in a few days

Gridify the climate simulation (cont’d)

280

80

64

32
32

32

Testbed: ApGrid Testbed http://www.apgrid.org/

Resources used in the experiment
KOUME Cluster (AIST)

Client
UME Cluster (AIST)

jobmanager-grd, (40cpu +
20cpu)
AIST GTRC CA

AMATA Cluster (KU)
jobmanager-sqms, 6cpu
AIST GTRC CA

Galley Cluster (Doshisha U.)
jobmanager-pbs, 10cpu
Globus CA

Gideon Cluster (HKU)
jobmanager-pbs, 15cpu
HKU CA

PRESTO Cluster (TITECH)
jobmanager-pbs, 4cpu
TITECH CA

VENUS Cluster (KISTI)
jobmanager-pbs, 60cpu
KISTI CA

ASE Cluster (NCHC)
jobmanager-pbs, 8cpu
NCHC CA

Handai Cluster (Osaka U)
jobmanager-pbs, 20cpu
Osaka CA

Total: 183

Illustration of Climate Simulation

client

server

grpc_call

Sim.
Server

Vis.
Server

front node
- public IP
- Globus
- gatekeeper
- jobmanager
- pbs, grd, sqms

- NAT

backend nodes
- private IP or
public IP

- Globus SDK
- Ninf-G Lib

Sequential Run: 8000 sec
Execution on Grid: 300 sec (100cpu)

Lessons Learned

We have to pay much efforts for initiation
Problems on installation of
GT2/PBS/jobmanger-pbs,grd

Failed in lookup service of hostname/IP addresses
Both for internet and intranet
Add host entries in /etc/hosts in our resources

failed in rsh/ssh server to/from backend nodes
.rhosts, ssh key, mismatch of hostname

pbs_rcp was located in NFS mounted (nosuid)
volume
bugs in jobmanager scripts (jobmanager-grd is not
formally released)

GT2 has poor interface with queuing system

Lessons Learned (cont’d)
We have to pay much efforts for initiation
(cont’d)

What I asked
Open firewall/TCP Wrapper
Additionally build Info SDK bundle with gcc32dbg
Add ${GLOBUS_LOCATION}/lib to
/etc/ld.so.conf and run ldconfig (this can be
avoided by specifying link option)
change configuration of xinetd/inetd
Enable NAT

Lessons Learned (cont’d)

Difficulties caused by the bottom-up
approach for building ApGrid Testbed and
the problems on the installation of the
Globus Toolkit.

Most resources are not dedicated to the
ApGrid Testbed.

There may be busy resources
Need grid level scheduler, fancy Grid reservation
system?

Incompatibility between different version of
GT2

Lessons Learned (cont’d)

Performance Problems
Overhead caused by MDS lookup

it takes several 10 seconds
Added a new feature to Ninf-G so as to bypass
MDS lookup

Default polling interval of the Globus
jobmanager (30 seconds) is not appropriate
for running fine-grain applications.

AIST and Doshisha U. have changed the interval
to 5 seconds (need to re-compile jobmanager)

Lessons Learned (cont’d)

Performance Problems (cont’d)
Time for initialization of function handles cannot be
negligible

Overhead caused by not only by MDS lookup but also hitting
gatekeeper (GSI authentication) and a jobmanager
invocation
Current Ninf-G implementation needs to hit gatekeeper for
initialization of function handles one-by-one

Although Globus GRAM enables to invoke multiple jobs at one
contact to gatekeeper, GRAM API is not sufficient to control
each jobs.

Used multithreading for initialization to improve
performance
Ninf-G2 will provide a new feature which supports efficient
initialization of multiple function handles.

Lessons Learned (cont’d)
We observed that Ninf-G apps did not work correctly
due to un-expected configuration of clusters

Failed in GSI auth. for establishing connection for file
transfers using GASS.

Backend nodes do not have host certs.
Added a new feature to Ninf-G which allows to use non-
secure connection

Due to the configuration of local scheduler (PBS),
Ninf-G executables were not activated.

Example:
PBS jobmanager on a 16 nodes cluster
Call grpc_call 16 times on the cluster. App. developer expected
to invoke 16 Ninf-G executables simultaneously.
Configuration of PBS Queue Manager set the max number of
simultaneous job invocation for each user a 9
9 Ninf-G executables were launched, however 7 were not
activated

Added a new feature to Ninf-G so as to set timeout for
initialization of a function handle.

Lessons Learned (cont’d)
Some resources are not stable

example: If I call many (more than 20) RPCs, some of
them fails (but sometimes all will done)
not yet resolved
GT2? Ninf-G? OS? Hardware?

Other instability
Version up of software (gt2, pbs, etc.) without
notification

realized when the application would fail.
it worked well yesterday, but I’m not sure whether it works
or not today

We could adapt for these instability by dynamic task
allocation.

Planned Additional Features for Ninf-G2

Get stub information without using LDAP
To avoid unstableness of MDS
Enables to install Ninf-G without ‘globus’ privilege

Initialize multiple function handles with one GRAM call
Reduce invocation cost

Callback from remote executable to the client
Heatbeat monitoring, visualization, debugging

revise the structure of client configuration file
multiple servers
jobmanager for each server
multiple ldapserver
…

Planned Additional Features (2)

Stateful Stubs
Keep state on the
server-side

Reduce
communication

Enable remote-
object like operation

DefClass mvmul

Required "mvmul.o"

{

DefState {

double * tmpStorage;

}

Define init(IN int N, double A[N][N]){

tmpStorage = malloc(sizeof(double) * N * N);

memcpy(tmpMat, A, sizeof(double) * N * N);

}

Define multiply(IN int N, IN double v_in[N],

OUT double vout[N])

{

mvmul(N, tmpMat, v_in, v_out);

}

}

Planned Additional Features (3)

Stateful stubs ClientAPI
Natural extension of the GridRPC API

double a[N][N];
double input_vectors[TIMES][N];
double output_vectors[TIMES][N];

grpc_handle_init_default(&handle,
"sample/mvmul");

grpc_invoke(&handle, "init", N, a);
for (int i = 0; i < TIMES; i++){

grpc_invoke(&handle, "multiply", N,
input_vectors[i],
output_vectors[i]);

}
grpc_handle_finalize(&handle);

High-level API development
Ninf-G itself does not provide Scheduling,
Fault Tolerance and Farming capability

These Capability will be implemented on top
of the primitive GridRPC

Scheduling:
automatically choose suitable server

Fault Tolerance:
detect error and re-submit the failed
computation request

Farming:
Support massive data-parallel applications

For More Info

Ninf home page
http://ninf.apgrid.org

GGF GridRPC WG home page
http://www.globalgridforum.org/

Contacts
ninf@apgrid.org

National Institute of Advanced Industrial Science and Technology

PART V
Summary

What has been done? What hasn’t?

Summary: How to build a Grid Testbed

Difficulties are caused by not technical
problems but sociological/political problems
Each site has its own policy

account management
firewalls
trusted CAs
…

Differences in interests
Application, middleware, networking, etc.

Differences in culture, language, etc.
Human interaction is very important

Summary: How to build a Grid Testbed (cont’d)
What has been done?

Resource sharing between more than 10 sites
(around 500cpus)
Use GT2 as a common software
Run Ninf-G applications

What hasn’t?
I could use, but it is difficult for others

I was given an account at each site by personal
communication

Formalize “how to use the Grid Testbed”
Provide documentation
Keep the testbed stable
Tools for management

Browse information
CA/Cert. management

Summary: How to build a Grid Testbed (cont’d)

Activities at the GGF
Production Grid Management RG

Draft a Case Study Document (ApGrid Testbed)
Groups in the Security Area

Policy Management Authority RG (not yet
approved)

Discuss with representatives from DOE Science Grid,
NASA IPG, EUDG, etc.

Federation/publishing of CAs (will kick off)
I’ll be one of co-chairs

Summary: Programming using GridRPC

MPI is not the only programming model!
Choose more appropriate programming model

GridRPC is suitable for task-parallel
applications

easy programming based on client/server
model

GridRPC API is going to be standardized at
the GGF GridRPC WG

Summary: Programming using GridRPC (cont’d)
What has been done?

Gridify legacy Fortran program (climate simulation)
using GridRPC
Run the simulation on the ApGrid testbed

used approximately 200cpus
What hasn’t?

Performance improvements
Missing functions/capabilities for running large-scale
applications

hearbeat, callback, high-capability client configuration file,
etc.

Link to other modules
Scheduling/brokering

Climate simulation used self-scheduling
Fault tolerant

Fault simulation was discarded

Summary: Programming using GridRPC (cont’d)

Activities at the GGF
GridRPC WG

Standardize GridRPC API
My colleague (Hide Nakada) is one of co-chairs
I’m a secretary

Applications and Testbeds RG

Special Thanks (for technical support) to:

Kasetsart University
(Thailand)

Sugree Phatanapherom
Doshisha University
(Japan)

Yusuke Tanimura
University of Hong Kong
(Hong Kong)

CHEN Lin, Elaine
KISTI (Korea)

Gee-Bum Koo, Jae-Hyuck

Tokyo Institute of
Technology (Japan)

Ken’ichiro Shirose
NCHC (Taiwan)

Julian Yu-Chung Chen
Osaka University (Japan)

Susumu Date
AIST (Japan)

Grid Support Team
APAN

HK, TW, JP

For more info

ApGird
http://www.apgrid.org/
discuss@apgrid.org

Ninf/Ninf-G
http://ninf.apgrid.org/
ninf@apgrid.org

GGF
http://www.globalgridforum.org/

